牛津大学研究生教材系列:现代经典光学
目 录内容简介
1 Electromagnetism and basic optics
1.1 Introduction
1.2 The Maxwell eqiations
1.3 Linear isotropic media
1.4 Plane electromagnetic waves
1.5 Energy flow
1.6 Scalar wave amplitudes
1.7 Dispersive media
1.8 Electrical transmission lines
1.9 Elementary(ray)optics
查看完整
1.1 Introduction
1.2 The Maxwell eqiations
1.3 Linear isotropic media
1.4 Plane electromagnetic waves
1.5 Energy flow
1.6 Scalar wave amplitudes
1.7 Dispersive media
1.8 Electrical transmission lines
1.9 Elementary(ray)optics
查看完整
目 录内容简介
从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:衍射、干涉、薄膜和全息光学,也涉及了高斯光束.激光腔、cD阅读器和共焦显微镜。涉及少量的量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
《现代经典光学》作者为牛津大学物理系的Geoffrey Brooker。
《现代经典光学》作者为牛津大学物理系的Geoffrey Brooker。
目 录内容简介
1 Electromagnetism and basic optics
1.1 Introduction
1.2 The Maxwell eqiations
1.3 Linear isotropic media
1.4 Plane electromagnetic waves
1.5 Energy flow
1.6 Scalar wave amplitudes
1.7 Dispersive media
1.8 Electrical transmission lines
1.9 Elementary(ray)optics
1.9.1 The thin lens
1.9.2 Sign conventions
1.9.3 Refraction at a spherical surface
1.9.4 The thick lens
1.10 Rays and waves
Problems
2 Fourier series and Fourier transforms
2.1 Introduction
2.2 Fourier series:spectrum of a periodic waveform
2.3 Fourier series:a mathematical reshape
2.4 The Fourier transform:spectrum of a non-periodic waveform
2.5 The analytic signal
2.6 The Dirac nction
2.7 Frequency and angular frequency
2.8 The power spectrum
2.9 Examples of Fourier transforms
2.9.1 A single rectangular pulse
2.9.2 The double pulse
2.9.3 A
2.9.4 A regular array of
2.9.5 A random array of
2.9.6 An infinite sinewave
2.10 Convolution and the convolution theorem
2.11 Examples of convoltion
2.12 Sign choices with Fourier transforms
problems
3 Diffraction
3.1 Introduction
3.2 Monochromatic spherical wave
3.3 The Kirchhoff diffraction integral
3.4 The Kirchhoff boundary conditions
3.5 Simplifying the Kirchhoff inregral
3.6 Complementary screens:the Babinet principle
3.7 The Fraunhofer condition I:provisional
3.8 Fraunhofer diffraction inone dimension
3.9 Fraunhofer diffraction intwo dimensions
3.10 Two ways of looking at diffraction
3.11 Examples of Fraunhofer diffraction
3.12 Fraunhofer diffraction and Fourier transforms
3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
3.14 The Fraunhofer condition Ⅲ:object and image
3.15 The Fresnel case of diffraction
3.16 Fraunhofer diffraction and optical resolution
3.17 Surfaces whose fields are related by a Fourier transform
3.18 Kirchhoff boundary conditions:a harder look
Problems
4 Diffraction gratings
4.1 Introduction
4.2 A basic transmission grating
4.3 The multiple-element pattern
4.4 Reflection grating
4.5 Blazing
4.6 Grating spectrometric instruments
4.7 Spectroscopic resolution
4.8 Making gratings
4.9 Tricks of the trade
4.9.1 Normal spectrum
4.9.2 Correct illumination
4.9.3 Shortening exposure times with a spectrograph
4.9.4 Vacuum instruments
4.9.5 Double monochromator
4.9.6 An inventors paradise
4.10 Beyond the simple theory
Problems
5 The Fabry-Perot
5.1 Introduction
5.2 Elementary theory
5.3 Basic apparatus
5.4 The meaning of finesse
5.5 Free spectral range and resolution
5.5.1 Free spectral range
5.5.2 Resolution
5.6 Analysis of an étalon fringe pattern
5.7 Flatness and parallelism of Fabry-Perot plates
5.8 Designing a Fabry-Perot to do a job
5.9 Practicalities of spectroscopy using a Fabry-Perot
5.10 The Fabry-Perot as a source of ideas
Problems
6 Thin films
6.1 Introduction
6.2 Basic calculation for one layer
6.3 Matrix elimination ofmiddleamplitudes
6.4 Reflected and transmitted Waves
6.5 Impedance concepts
6.6 High-reflectivity mirrors
6.7 Anti-reflection coatings
6.8 Interference filters
6.9 Practicalities of thin-film deposition
Problems
7 Ray matrices and Gaussian beams
7.1 Introduction
7.2 Matrix methods in ray optics
7.3 Matrices for translation and refraction
7.4 Reflections
7.5 Spherical waves
7.6 Gaussian beams
7.7 Properties of a Gaussian beam
7.8 Sign conventions
7.9 Propagation of a Gaussian beam
7.10 Electric and magnetic fields
Problems
8 Optical cavities
8.1 Introduction
8.2 Gauss-Hermite beams
8.3 Cavity resonator
8.4 Cavity modes
8.5 The condition for a low-loss mode
8.6 Finding the mode shape for a cavity
8.7 Longitudinal modes
8.8 High-loss cavities
8.9 The symmetrical confocal cavity
8.10 The confocal Fabry-Perot
8.11 Choice of cavity geometry for a laser
8.12 Selection of a desired transverse mode
8.13 Mode matching
Problems
9 Coherence:qualitative
9.1 Introduction
9.2 Terminology
9.3 Young fringes:tolerance to frequency range
9.4 Young fringes:tolerance to collimation
9.5 Coherence area
9.6 The Michelson stellar interferometer
9.7 Aperture synthesis
9.8 Longitudinal and transverse coherence
9.9 Interference of two parallel plane waves
9.10 Fast and slow detectors
9.11 Coherence time and coherence length
9.12 A Michelson interferometer investigating longitudinal coherence
9.13 Fringe visibility
9.14 Orders of magnitude
9.15 Discussion
9.15.1 What of lasers?
9.15.2 The Young slits:another look
9.15.3 Fast and slow detectors:another look
9.15.4 Grating monochromator:another look
9.15.5 Polarized and unpolarized light
Problems
10 Coherence:correlation functions
10.1 Introduction
10.2 Correlation function:definition
10.3 Autocorrelation and the Michelson interferometer
10.4 Normalized autocorrelation function
10.5 Fringe visibility
10.6 The Wiener-Khintchine theorem
10.7 Fourier transform spectroscopy
10.8 Partial coherence:transverse
10.9 The van Cittert-Zernike theorem
10.10 Intensity correlation
10.11 Chaotic light and laser light
10.12 The Hanbury Brown-Twiss experiment
10.13 Stellar diameters measured by intensity correlation
10.14 Classical and quantum optics
Problems
11 Optical practicalities:étendue,interferometry,fringe localization
11.1 Introduction
11.2 Energy flow:étendue and radiance
11.3 Conservation of étendue and radiance
11.4 Longitudinal and transverse modes
11.5 étendue and coherence area
11.6 Field modes and entropy
11.7 Radianee of some optical sources
11.7.1 Radiance of a black body
11.7.2 Radiance of a gas-discharge lamp
11.7.3 Radiance of a light-emitting diode (LED)
11.8 étendue and interferometers
11.9 大Etendue and spectrometers
11.10 A design study:a Fourier-transform spectrometer
11.11 Fringe locahzation
Problems
12 Image formation:diffraction theory
12.1 Introduction
12.2 Image formation with transversely Coherent illumination informal
12.3 Image formation:ideal optical system
12.4 Image formation:imperfect optical system
12.5 Microscope resolution:Abbe theory
12.5.1 Abbe theory:introduction
12.5.2 Abbe theory:explanation
12.6 Improving the basic microscope
12.7 Phase contrast
12.8 Dark-ground illumination
12.9 Schlieren
12.10 Apodizing
12.11 Holography
12.12 The point spread function
12.13 Optical transfer function;modulation transfer function
Problems
13 Holography
13.1 Introduction
13.2 Special case:plane-wave obiect beam and plane-wave reference beam
13.3 The intensity of the reference beam
13.4 The response of a photographic emulsion
13.5 The theory of holography
13.6 Formatiol of an image
13.7 What if we break a hologram in half?
13.8 Replay with changed optical geometry
13.9 The effect of a thick photographic emulsion
13.10 Phase holograms
13.11 Gabors holograms
13.12 Practicalities
13.13 Applications of holography
Problems
14 Optical fibres
14.1 Introduction
14.2 Fibre optics:basics
14.3 Transverse modes
14.4 Dispersion
14.4.1 Material dispersion
14.4.2 Intermodal and intramodal dispersion
14.5 Multimode fibres
14.6 Single-mode fibres
Problems
15 Polarization
15.1 Introduction
15.2 Anisotropic media
15.3 The mathematics of anisotropy
15.4 The understanding of tensor錳j
15.5 The Faraday effect
15.6 Optical activity
Problems
16 Two modern optical devices
16.1 Introduction
16.2 Compact disc:description of the disc
16.3 Compact disc:the encoding scheme
16.4 Optics of reading a compact disc
16.5 Feedback systems
16.5.1 Correction of tracking
16.5.2 Correction of focus
16.6 CD-ROM
16.7 DVD
16.8 The confocal microscope
16.9 Confocal microscope:resolution
16.10 The confocal microscope:depth of focus
Problems
Notes on selected problems
Bibliography
Index
^ 收 起
1.1 Introduction
1.2 The Maxwell eqiations
1.3 Linear isotropic media
1.4 Plane electromagnetic waves
1.5 Energy flow
1.6 Scalar wave amplitudes
1.7 Dispersive media
1.8 Electrical transmission lines
1.9 Elementary(ray)optics
1.9.1 The thin lens
1.9.2 Sign conventions
1.9.3 Refraction at a spherical surface
1.9.4 The thick lens
1.10 Rays and waves
Problems
2 Fourier series and Fourier transforms
2.1 Introduction
2.2 Fourier series:spectrum of a periodic waveform
2.3 Fourier series:a mathematical reshape
2.4 The Fourier transform:spectrum of a non-periodic waveform
2.5 The analytic signal
2.6 The Dirac nction
2.7 Frequency and angular frequency
2.8 The power spectrum
2.9 Examples of Fourier transforms
2.9.1 A single rectangular pulse
2.9.2 The double pulse
2.9.3 A
2.9.4 A regular array of
2.9.5 A random array of
2.9.6 An infinite sinewave
2.10 Convolution and the convolution theorem
2.11 Examples of convoltion
2.12 Sign choices with Fourier transforms
problems
3 Diffraction
3.1 Introduction
3.2 Monochromatic spherical wave
3.3 The Kirchhoff diffraction integral
3.4 The Kirchhoff boundary conditions
3.5 Simplifying the Kirchhoff inregral
3.6 Complementary screens:the Babinet principle
3.7 The Fraunhofer condition I:provisional
3.8 Fraunhofer diffraction inone dimension
3.9 Fraunhofer diffraction intwo dimensions
3.10 Two ways of looking at diffraction
3.11 Examples of Fraunhofer diffraction
3.12 Fraunhofer diffraction and Fourier transforms
3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
3.14 The Fraunhofer condition Ⅲ:object and image
3.15 The Fresnel case of diffraction
3.16 Fraunhofer diffraction and optical resolution
3.17 Surfaces whose fields are related by a Fourier transform
3.18 Kirchhoff boundary conditions:a harder look
Problems
4 Diffraction gratings
4.1 Introduction
4.2 A basic transmission grating
4.3 The multiple-element pattern
4.4 Reflection grating
4.5 Blazing
4.6 Grating spectrometric instruments
4.7 Spectroscopic resolution
4.8 Making gratings
4.9 Tricks of the trade
4.9.1 Normal spectrum
4.9.2 Correct illumination
4.9.3 Shortening exposure times with a spectrograph
4.9.4 Vacuum instruments
4.9.5 Double monochromator
4.9.6 An inventors paradise
4.10 Beyond the simple theory
Problems
5 The Fabry-Perot
5.1 Introduction
5.2 Elementary theory
5.3 Basic apparatus
5.4 The meaning of finesse
5.5 Free spectral range and resolution
5.5.1 Free spectral range
5.5.2 Resolution
5.6 Analysis of an étalon fringe pattern
5.7 Flatness and parallelism of Fabry-Perot plates
5.8 Designing a Fabry-Perot to do a job
5.9 Practicalities of spectroscopy using a Fabry-Perot
5.10 The Fabry-Perot as a source of ideas
Problems
6 Thin films
6.1 Introduction
6.2 Basic calculation for one layer
6.3 Matrix elimination ofmiddleamplitudes
6.4 Reflected and transmitted Waves
6.5 Impedance concepts
6.6 High-reflectivity mirrors
6.7 Anti-reflection coatings
6.8 Interference filters
6.9 Practicalities of thin-film deposition
Problems
7 Ray matrices and Gaussian beams
7.1 Introduction
7.2 Matrix methods in ray optics
7.3 Matrices for translation and refraction
7.4 Reflections
7.5 Spherical waves
7.6 Gaussian beams
7.7 Properties of a Gaussian beam
7.8 Sign conventions
7.9 Propagation of a Gaussian beam
7.10 Electric and magnetic fields
Problems
8 Optical cavities
8.1 Introduction
8.2 Gauss-Hermite beams
8.3 Cavity resonator
8.4 Cavity modes
8.5 The condition for a low-loss mode
8.6 Finding the mode shape for a cavity
8.7 Longitudinal modes
8.8 High-loss cavities
8.9 The symmetrical confocal cavity
8.10 The confocal Fabry-Perot
8.11 Choice of cavity geometry for a laser
8.12 Selection of a desired transverse mode
8.13 Mode matching
Problems
9 Coherence:qualitative
9.1 Introduction
9.2 Terminology
9.3 Young fringes:tolerance to frequency range
9.4 Young fringes:tolerance to collimation
9.5 Coherence area
9.6 The Michelson stellar interferometer
9.7 Aperture synthesis
9.8 Longitudinal and transverse coherence
9.9 Interference of two parallel plane waves
9.10 Fast and slow detectors
9.11 Coherence time and coherence length
9.12 A Michelson interferometer investigating longitudinal coherence
9.13 Fringe visibility
9.14 Orders of magnitude
9.15 Discussion
9.15.1 What of lasers?
9.15.2 The Young slits:another look
9.15.3 Fast and slow detectors:another look
9.15.4 Grating monochromator:another look
9.15.5 Polarized and unpolarized light
Problems
10 Coherence:correlation functions
10.1 Introduction
10.2 Correlation function:definition
10.3 Autocorrelation and the Michelson interferometer
10.4 Normalized autocorrelation function
10.5 Fringe visibility
10.6 The Wiener-Khintchine theorem
10.7 Fourier transform spectroscopy
10.8 Partial coherence:transverse
10.9 The van Cittert-Zernike theorem
10.10 Intensity correlation
10.11 Chaotic light and laser light
10.12 The Hanbury Brown-Twiss experiment
10.13 Stellar diameters measured by intensity correlation
10.14 Classical and quantum optics
Problems
11 Optical practicalities:étendue,interferometry,fringe localization
11.1 Introduction
11.2 Energy flow:étendue and radiance
11.3 Conservation of étendue and radiance
11.4 Longitudinal and transverse modes
11.5 étendue and coherence area
11.6 Field modes and entropy
11.7 Radianee of some optical sources
11.7.1 Radiance of a black body
11.7.2 Radiance of a gas-discharge lamp
11.7.3 Radiance of a light-emitting diode (LED)
11.8 étendue and interferometers
11.9 大Etendue and spectrometers
11.10 A design study:a Fourier-transform spectrometer
11.11 Fringe locahzation
Problems
12 Image formation:diffraction theory
12.1 Introduction
12.2 Image formation with transversely Coherent illumination informal
12.3 Image formation:ideal optical system
12.4 Image formation:imperfect optical system
12.5 Microscope resolution:Abbe theory
12.5.1 Abbe theory:introduction
12.5.2 Abbe theory:explanation
12.6 Improving the basic microscope
12.7 Phase contrast
12.8 Dark-ground illumination
12.9 Schlieren
12.10 Apodizing
12.11 Holography
12.12 The point spread function
12.13 Optical transfer function;modulation transfer function
Problems
13 Holography
13.1 Introduction
13.2 Special case:plane-wave obiect beam and plane-wave reference beam
13.3 The intensity of the reference beam
13.4 The response of a photographic emulsion
13.5 The theory of holography
13.6 Formatiol of an image
13.7 What if we break a hologram in half?
13.8 Replay with changed optical geometry
13.9 The effect of a thick photographic emulsion
13.10 Phase holograms
13.11 Gabors holograms
13.12 Practicalities
13.13 Applications of holography
Problems
14 Optical fibres
14.1 Introduction
14.2 Fibre optics:basics
14.3 Transverse modes
14.4 Dispersion
14.4.1 Material dispersion
14.4.2 Intermodal and intramodal dispersion
14.5 Multimode fibres
14.6 Single-mode fibres
Problems
15 Polarization
15.1 Introduction
15.2 Anisotropic media
15.3 The mathematics of anisotropy
15.4 The understanding of tensor錳j
15.5 The Faraday effect
15.6 Optical activity
Problems
16 Two modern optical devices
16.1 Introduction
16.2 Compact disc:description of the disc
16.3 Compact disc:the encoding scheme
16.4 Optics of reading a compact disc
16.5 Feedback systems
16.5.1 Correction of tracking
16.5.2 Correction of focus
16.6 CD-ROM
16.7 DVD
16.8 The confocal microscope
16.9 Confocal microscope:resolution
16.10 The confocal microscope:depth of focus
Problems
Notes on selected problems
Bibliography
Index
^ 收 起
目 录内容简介
从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:衍射、干涉、薄膜和全息光学,也涉及了高斯光束.激光腔、cD阅读器和共焦显微镜。涉及少量的量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
《现代经典光学》作者为牛津大学物理系的Geoffrey Brooker。
《现代经典光学》作者为牛津大学物理系的Geoffrey Brooker。
比价列表