俄罗斯数学教材选译·随机金融基础1:事实·模型
本书原版自1998年出版以来,被认为是“随机金融数学方面最深刻的一本著作”。全书共分两卷。每一卷都包含四章。第一卷的副题为:事实,模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本 “随机金融数学全书”。
第一卷的第一章有关国际金融市场以及金融理论和金融工程的 “事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及马科维奇证券组合选择理论、资本资产定价模型(CAPM)、罗斯套利定价理论(APT)、有效市场理论等,甚至还简要介绍了保险业和精算理论。
第一卷的后三章都有关金融学的随机“模型”:离散模型、连续模型和统计模型。作者提出,杜布分解、局部鞅、鞅变换等概念在价格模型的套利定价讨论中起本质作用;而对于统计模型,除了高观点介绍各种线性模型以外,详尽介绍了近年发展起来的 ARCH 和 GARCH 类模型以及随机波动率模型。同时,还讨论混沌理论、分形理论和各种数据统计分析方法在金融资产价格模型中的应用。关于连续模型的内容远超过一般的金融数学教材和专著。除了用基于布朗运动的随机分析来描述的模型以外,还对最一般的半鞅模型作精辟介绍。同时,详细阐述稳定分布和稳定过程、列维过程、双曲分布和双曲过程以至更一般的无限可分分布等重要工具。
第二卷有关“理论”的四章是:“随机金融模型中的套利理论”或“定价理论”;先是“离散时间”,再是 “连续时间”。“套利理论”主要指资产定价的第一和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(第一定理),并且当市场完全时,这样的鞅测度是唯一的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美,无论对数学还是对金融的发展都有深远影响。但所涉及的数学工具也越来越艰深。作者高瞻远瞩,抓住要害,以他的统一观点来综述这方面从离散模型到连续(半鞅)模型的各种最新成果及其证明,使人一目了然。“定价理论” 是指通过投资策略进行风险对冲来对未定权益进行定价的理论。作者通过 “(对冲)上价格” 和 “(对冲)下价格” 的概念给出了离散时间的对冲定价公式,并指出它们与等价概率鞅测度之间的联系。由此对经典的布莱克-舒尔斯期权定价理论作出更加入木三分的数学分析。作者还详尽讨论与最优停止问题和斯蒂芬问题相联系的美式期权定价理论。
本书的阐述深入浅出,精致透彻,适合应用数学、金融工程等专业的教师和学生以及广大金融工作者使用参考。
第一卷的第一章有关国际金融市场以及金融理论和金融工程的 “事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及马科维奇证券组合选择理论、资本资产定价模型(CAPM)、罗斯套利定价理论(APT)、有效市场理论等,甚至还简要介绍了保险业和精算理论。
第一卷的后三章都有关金融学的随机“模型”:离散模型、连续模型和统计模型。作者提出,杜布分解、局部鞅、鞅变换等概念在价格模型的套利定价讨论中起本质作用;而对于统计模型,除了高观点介绍各种线性模型以外,详尽介绍了近年发展起来的 ARCH 和 GARCH 类模型以及随机波动率模型。同时,还讨论混沌理论、分形理论和各种数据统计分析方法在金融资产价格模型中的应用。关于连续模型的内容远超过一般的金融数学教材和专著。除了用基于布朗运动的随机分析来描述的模型以外,还对最一般的半鞅模型作精辟介绍。同时,详细阐述稳定分布和稳定过程、列维过程、双曲分布和双曲过程以至更一般的无限可分分布等重要工具。
第二卷有关“理论”的四章是:“随机金融模型中的套利理论”或“定价理论”;先是“离散时间”,再是 “连续时间”。“套利理论”主要指资产定价的第一和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(第一定理),并且当市场完全时,这样的鞅测度是唯一的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美,无论对数学还是对金融的发展都有深远影响。但所涉及的数学工具也越来越艰深。作者高瞻远瞩,抓住要害,以他的统一观点来综述这方面从离散模型到连续(半鞅)模型的各种最新成果及其证明,使人一目了然。“定价理论” 是指通过投资策略进行风险对冲来对未定权益进行定价的理论。作者通过 “(对冲)上价格” 和 “(对冲)下价格” 的概念给出了离散时间的对冲定价公式,并指出它们与等价概率鞅测度之间的联系。由此对经典的布莱克-舒尔斯期权定价理论作出更加入木三分的数学分析。作者还详尽讨论与最优停止问题和斯蒂芬问题相联系的美式期权定价理论。
本书的阐述深入浅出,精致透彻,适合应用数学、金融工程等专业的教师和学生以及广大金融工作者使用参考。
比价列表