前言
第1章 蛋白质结构预测概述
1.1 蛋白质预测基本方法简介
1.2 蛋白质二级结构和结构域预测方法简介
第2章 相关知识背景
2.1 生物信息学
2.1.1 生物信息学的定义、目的、内容和发展趋势
2.1.2 基因组学
2.1.3 蛋白质组学
2.1.4 数据库
2.2 蛋白质序列、结构与功能的关系
2.3 机器学习
2.3.1 机器学习的定义和特点
2.3.2 基本的机器学习模型
2.3.3 机器学习方法分类
2.3.4 应用于生物信息学领域的机器学习方法
第3章 统计学习理论
3.1 学习问题的表示方法
3.1.1 概述
3.1.2 学习问题的一般表示
3.1.3 学习问题的模型
3.1.4 经验风险最小化原则
3.1.5 复杂性和推广能力
3.1.6 模式识别问题
3.2 统计学习理论的四个部分
3.2.1 学习过程的一致性
3.2.2 学习过程收敛速度的界
3.2.3 控制学习过程推广能力的理论
第4章 构造支持向量机
4.1 优化理论
4.1.1 问题公式化
4.1.2 拉格朗日理论
4.1.3 KKT理论
4.2 支持向量机
4.2.1 支持向量机基本原理简介
4.2.2 线性分类
4.2.3 非线性分类
4.2.4 多重分类
第5章 应用于支持向量机的主要算法
5.1 支持向量机算法中目前的研究状况
5.2 分解算法
5.3 顺序最小优化算法
5.3.1 顺序最小优化算法的原理
5.3.2 两个拉格朗日乘子的优化问题
5.3.3 选择待优化拉格朗日乘子的启发式方法
5.3.4 每次最小优化后的重置工作
5.3.5 顺序最小优化算法的特点和优势
第6章 Libsvm简介
6.1 公式
6.1.1 C一支持向量分类(二元)
6.1.2 支持向量分类(二元)
6.2 二次规划问题的解决
6.2.1 C-SVC的分解算法
6.2.2 工作集的选择和停止循环的标准
6.2.3 支持向量分类的分解方法
6.2.4 解析解法
6.2.5 6和p的计算
6.3 压缩和缓存
6.3.1 压缩
6.3.2 缓存
6.4 多元分类
6.5 非平衡数据集
6.6 模型的选择
6.7 预测蛋白质结构中运用Libsvm的基本操作方法
第7章 蛋白质二级结构预测
7.1 蛋白质结构
7.1.1 蛋白质的一级结构
7.1.2 蛋白质的二级结构特征
7.1.3 蛋白质结构域、三级结构与四级结构
7.2 蛋白质二级结构定义
7.2.1 DSSP数据库中的蛋白质二级结构特征识别
7.2.2 蛋白质二级结构鉴别方法
7.2.3 DEFINE算法对于蛋白质二级结构的定义
7.2.4 P.Cruve方法
7.3 蛋白质二级结构预测
7.3.1 概述
7.3.2 样本集的选择
7.3.3 二级结构规类方法
7.3.4 运用支持向量机进行蛋白质结构预测的样本提取方法与编码规则
7.3.5 二级结构预测准确率评估方法
7.3.6 蛋白质二级结构预测结果
第8章 蛋白质折叠类型的预测
8.1 简介
8.2 蛋白质结构域数据
8.2.1 DALI算法和FSSP数据库——距离矩阵比对的蛋白质结构比较
8.2.2 CATH蛋白质结构域数据库
8.2.3 SCOP数据库
8.2.4 SCOP、CATH和FSSP的关系
8.3 蛋白质结构域的支持向量机预测方法
8.3.1 蛋白质结构域预测中的样本集选择
8.3.2 编码方法
8.3.3 拓扑预测准确率的评估方法
8.3.4 分类器设计与软件使用方法
8.3.5 结果与分析
8.4 小结
8.4.1 结论
8.4.2 讨论
参考文献
附表1 Rsl26数据集
附表2 cB513数据集
附表3 蛋白质结构域拓扑层预测样本集
附表4 蛋白质结构域同源超族层预测样本集
附表5 蛋白质结构域序列家族层样本集
^ 收 起