现代数学基础:线性代数与矩阵论
目 录内容简介
本书是将矩阵论和线性空间理论溶合在一起编写的。先以中学时熟悉的多项式为基础,将多项式理论交代清楚。接下去讲多元多项式。然后是矩阵论和线性空间理论的基本工具:行列式、矩阵以及线性方程组求解理论。从而引进线性空间、线性不等式和它上面的线性变换,以及求复方阵的Jordan标准形的代数理论和几何解释,Jordan标准形的应用,它包含了方阵函数和方阵在复相似下的标准型理论。给出了线性函数和它的推广,即多重线性函数,Grassmann代数以及张量场。接着转向内积空间(即实和复Euclid空间的结构和二次型的分类)。最后三章是广义逆矩阵的几何基础和矩阵处理,非负矩阵的基本性质和复矩阵偶在相抵下的标准形。
本书的特点是充分发挥矩阵技巧在矩阵论和线性空间理论中的应用,涉及面也比较广。本书的另一个特点是书中的例题和习题比较难一点,虽然本书的一些习题已经被一些作者选为例题,但是本书的目的是使同学有一个良好的严格训练环境,可以自由地选择这些习题来做。
查看完整
本书的特点是充分发挥矩阵技巧在矩阵论和线性空间理论中的应用,涉及面也比较广。本书的另一个特点是书中的例题和习题比较难一点,虽然本书的一些习题已经被一些作者选为例题,但是本书的目的是使同学有一个良好的严格训练环境,可以自由地选择这些习题来做。
查看完整
比价列表