物理学经典英文教材系列:现代量子力学(修订版)
Contents
Foreword
Preface
In Memoriam
1 FUNDAMENTAL CONCEPTS
1.1 The Stern-gerlach Experiment
1.2 Kets,Bras,and Operators
1.3 Base Kets and Matrix Representations
1.4 Measurements,Observales,and the Uncertainty Relations
查看完整
Foreword
Preface
In Memoriam
1 FUNDAMENTAL CONCEPTS
1.1 The Stern-gerlach Experiment
1.2 Kets,Bras,and Operators
1.3 Base Kets and Matrix Representations
1.4 Measurements,Observales,and the Uncertainty Relations
查看完整
Jun John Sakurai,was born in1993in Tokyo and came to the United States as a high schooll student in 1949.He studied at Harvard and at Cornell,where he received his h.D.in 1958.He was then appointed assistant professor of Physics at the University of Chicago,and became a full professor in 1964.He stayed at Chicago until 1970 when he moved to the University of California at Los Angeles,Where he remained until his death.During his…
查看完整
查看完整
本书作者Sakurai是一位杰出的理论物理学家和粒子物理学家。本书对于量力学概念的介绍与传统的做法不同,没有受制于量子力学发展的历史线索,力求从一开始就摆脱经典力学的束缚。它直接从量子力学特有的电子自旋的观测实验出发,围绕其状态的概率特征和叠加原理展开对于量子力学基本概念和基本原理的阐述。从空间平移、空间转动及时间演化等对称性变换出发,引入动量、角动量及哈密顿算符等基本力学量,讨论它们的本征值问题,它们的运动方程及与经典力学的关系,从而直接切入量子力学的核心问题。这种被称之为“用量子力学方式来思考”的做法贯穿全书,是本书最引入瞩目之处。
国内已经出版了不少高等量子力学的教材,但与之直接对应的国外教材却并不多见。本书从其设定的读者对象、它的选材范围以及其深度与广度来看,都非常适合这方面的要求。如果从双语教学角度来考虑,它无疑也是理想教材的候选者。
国内已经出版了不少高等量子力学的教材,但与之直接对应的国外教材却并不多见。本书从其设定的读者对象、它的选材范围以及其深度与广度来看,都非常适合这方面的要求。如果从双语教学角度来考虑,它无疑也是理想教材的候选者。
Contents
Foreword
Preface
In Memoriam
1 FUNDAMENTAL CONCEPTS
1.1 The Stern-gerlach Experiment
1.2 Kets,Bras,and Operators
1.3 Base Kets and Matrix Representations
1.4 Measurements,Observales,and the Uncertainty Relations
1.5 Change of Basis
1.6 Position,Momentum,and Translation
1.7 Wave Functions in Postion and Momentum Space
Problems
2 QUANTUM DYNAMICS
2.1 Time Evolution and the Schrodinger Equation
2.2 The Schrodinger Versus the Heisenberg Picture
2.3 Simple Harmonic Oscillator
2.4 Schrodingers Wave Equation
2.5 Propagators and Feynman Path Integrals
2.6 Potentials and Gauge Transformations
Problems
3 THEORY OF ANGULAR MOMENTUM
3.1 Rotations and Angular Momentum Commutation Relations
3.2 Spin1/2 Systems and Finite Roations
3.3 SO(3),Su(2),and Euler Roations
3.4 Density Operators and Pure Versus Muixed Ensembles
3.5 Eigenvalues and Eigenstates of Angular Momentum
3.6 Orbital Angular Momentum
3.7 Addition of Angular Momenta
3.8 Schwinger s Oscillator Model of Angular Momentum
3.9 Spin Corelation Measurements and Bell s Inequality
3.10 Tensor Operators
Problems
4 SYMMETRY IN QUANTUM MECHANICS
4.1 Symmetries,COnservation Laws and Degeneracies
4.2 Discrete Symmetries,Parity,or Space Inversion
4.3 Lattice Translation as a iscrete Symmetry
4.4 The Time-Reversal Discrete Symmetry
Problems
5 APPROXIMATION METHODS
5.1 Time-Independent Perturbation Theory:Nondegenerate Case
5.2 Time-Independent Perturbation Theory:The Degenerate Case
5.3 Hydrogenlike Atoms:Fine Structure and the Zeeman Effect
5.4 Variational Methods
5.5 Time-Dependent Potentials:The Interaction Picture
5.6 Time-Dependent Perturbation Theory
5.7 Applications to Interactions with the CLassical Radiation Field
5.8 Energy Shift and Decay Width
Problems
6 IDENTICAL PARTICLES
6.1 Permutation Symmetry
6.2 Symmetrization Postulate
6.3 Two-Electron System
6.4 The Helium Aton
6.5 Permutation Symmetry and Young Tableaux
Problems
7 SCATTERING THEROY
7.1 The Lippmann-Schwinger Equation
7.2 The Born Approximation
7.3 Optical Theorem
7.4 Eikonal Approximation
7.5 Free-Particle States:Plane Waves Versus Spherical Waves
7.6 Method of Partial Waves
7.7 Low-Energy Scattering and Bound States
7.8 Resonance Scattering
7.9 Identical Particles and Scattering
7.10 Symmerty Considerations in Scattering
7.11 Time-Dependent Formulation of Scattering
7.12 Inelastic Electron-Atom Scattering
7.13 Coulomb Scattering
Problems
AppendixA
AppendixB
AppendixC
SupplementⅠ Adiabatic Change and Geometrical Phase
SupplementⅡ Non-Exponential Decays
Bibliography
INdex
^ 收 起
Foreword
Preface
In Memoriam
1 FUNDAMENTAL CONCEPTS
1.1 The Stern-gerlach Experiment
1.2 Kets,Bras,and Operators
1.3 Base Kets and Matrix Representations
1.4 Measurements,Observales,and the Uncertainty Relations
1.5 Change of Basis
1.6 Position,Momentum,and Translation
1.7 Wave Functions in Postion and Momentum Space
Problems
2 QUANTUM DYNAMICS
2.1 Time Evolution and the Schrodinger Equation
2.2 The Schrodinger Versus the Heisenberg Picture
2.3 Simple Harmonic Oscillator
2.4 Schrodingers Wave Equation
2.5 Propagators and Feynman Path Integrals
2.6 Potentials and Gauge Transformations
Problems
3 THEORY OF ANGULAR MOMENTUM
3.1 Rotations and Angular Momentum Commutation Relations
3.2 Spin1/2 Systems and Finite Roations
3.3 SO(3),Su(2),and Euler Roations
3.4 Density Operators and Pure Versus Muixed Ensembles
3.5 Eigenvalues and Eigenstates of Angular Momentum
3.6 Orbital Angular Momentum
3.7 Addition of Angular Momenta
3.8 Schwinger s Oscillator Model of Angular Momentum
3.9 Spin Corelation Measurements and Bell s Inequality
3.10 Tensor Operators
Problems
4 SYMMETRY IN QUANTUM MECHANICS
4.1 Symmetries,COnservation Laws and Degeneracies
4.2 Discrete Symmetries,Parity,or Space Inversion
4.3 Lattice Translation as a iscrete Symmetry
4.4 The Time-Reversal Discrete Symmetry
Problems
5 APPROXIMATION METHODS
5.1 Time-Independent Perturbation Theory:Nondegenerate Case
5.2 Time-Independent Perturbation Theory:The Degenerate Case
5.3 Hydrogenlike Atoms:Fine Structure and the Zeeman Effect
5.4 Variational Methods
5.5 Time-Dependent Potentials:The Interaction Picture
5.6 Time-Dependent Perturbation Theory
5.7 Applications to Interactions with the CLassical Radiation Field
5.8 Energy Shift and Decay Width
Problems
6 IDENTICAL PARTICLES
6.1 Permutation Symmetry
6.2 Symmetrization Postulate
6.3 Two-Electron System
6.4 The Helium Aton
6.5 Permutation Symmetry and Young Tableaux
Problems
7 SCATTERING THEROY
7.1 The Lippmann-Schwinger Equation
7.2 The Born Approximation
7.3 Optical Theorem
7.4 Eikonal Approximation
7.5 Free-Particle States:Plane Waves Versus Spherical Waves
7.6 Method of Partial Waves
7.7 Low-Energy Scattering and Bound States
7.8 Resonance Scattering
7.9 Identical Particles and Scattering
7.10 Symmerty Considerations in Scattering
7.11 Time-Dependent Formulation of Scattering
7.12 Inelastic Electron-Atom Scattering
7.13 Coulomb Scattering
Problems
AppendixA
AppendixB
AppendixC
SupplementⅠ Adiabatic Change and Geometrical Phase
SupplementⅡ Non-Exponential Decays
Bibliography
INdex
^ 收 起
Jun John Sakurai,was born in1993in Tokyo and came to the United States as a high schooll student in 1949.He studied at Harvard and at Cornell,where he received his h.D.in 1958.He was then appointed assistant professor of Physics at the University of Chicago,and became a full professor in 1964.He stayed at Chicago until 1970 when he moved to the University of California at Los Angeles,Where he remained until his death.During his lifetime he wrote 119 articles in theoretical physics of elementary particles as well as several books and monographs on both quantum and particle theory.
^ 收 起
^ 收 起
本书作者Sakurai是一位杰出的理论物理学家和粒子物理学家。本书对于量力学概念的介绍与传统的做法不同,没有受制于量子力学发展的历史线索,力求从一开始就摆脱经典力学的束缚。它直接从量子力学特有的电子自旋的观测实验出发,围绕其状态的概率特征和叠加原理展开对于量子力学基本概念和基本原理的阐述。从空间平移、空间转动及时间演化等对称性变换出发,引入动量、角动量及哈密顿算符等基本力学量,讨论它们的本征值问题,它们的运动方程及与经典力学的关系,从而直接切入量子力学的核心问题。这种被称之为“用量子力学方式来思考”的做法贯穿全书,是本书最引入瞩目之处。
国内已经出版了不少高等量子力学的教材,但与之直接对应的国外教材却并不多见。本书从其设定的读者对象、它的选材范围以及其深度与广度来看,都非常适合这方面的要求。如果从双语教学角度来考虑,它无疑也是理想教材的候选者。
国内已经出版了不少高等量子力学的教材,但与之直接对应的国外教材却并不多见。本书从其设定的读者对象、它的选材范围以及其深度与广度来看,都非常适合这方面的要求。如果从双语教学角度来考虑,它无疑也是理想教材的候选者。
比价列表