海外优秀数学类教材系列丛书:离散数学及其应用(第3版)(影印版)
目 录内容简介
~Chapter 1 The Logic of Compound Statements 1
1.1 LogicalForm and LogicalEquivalence 1
Statements;CompoundStatements;TruthValues;EvaluatingtheTruthofMo
re General Compound Statements;Logical Equivalence;Tautologies
and Contradictions;Summary ofLogical Equivalences
1.2 Conditional Statements 17
查看完整
1.1 LogicalForm and LogicalEquivalence 1
Statements;CompoundStatements;TruthValues;EvaluatingtheTruthofMo
re General Compound Statements;Logical Equivalence;Tautologies
and Contradictions;Summary ofLogical Equivalences
1.2 Conditional Statements 17
查看完整
目 录内容简介
本书从Thomson Learning出版公司引进。本书内容包括:复合陈述中的逻辑,定量陈述中的逻辑,基础数论及证明方法,数理推断及序列,集合论,计算和概率,函数,递归,运算法则及效率,关系,图和树,常规表达式和自动控制。
本书可作为高等院校理工科专业学生作为离散数学双语教材使用,与其同类教材相比;本书有以下几个突出的特点:1.着重逻辑推理;2.以螺旋前进的方式介绍并运用概念,便于学生了解及进一步掌握;3.大量的图表便于学生直观理解;4.习题配置合理,书后给出了习题答案.5.有与本书配套的网络资源。
本书叙述详尽、语言表达流畅,适合于理工科各专业学生作为双语教材使用,也可供教师教学参考。
本书可作为高等院校理工科专业学生作为离散数学双语教材使用,与其同类教材相比;本书有以下几个突出的特点:1.着重逻辑推理;2.以螺旋前进的方式介绍并运用概念,便于学生了解及进一步掌握;3.大量的图表便于学生直观理解;4.习题配置合理,书后给出了习题答案.5.有与本书配套的网络资源。
本书叙述详尽、语言表达流畅,适合于理工科各专业学生作为双语教材使用,也可供教师教学参考。
目 录内容简介
~Chapter 1 The Logic of Compound Statements 1
1.1 LogicalForm and LogicalEquivalence 1
Statements;CompoundStatements;TruthValues;EvaluatingtheTruthofMo
re General Compound Statements;Logical Equivalence;Tautologies
and Contradictions;Summary ofLogical Equivalences
1.2 Conditional Statements 17
Logical Equivalences Involving→:Representation ofIf-Then
As Or;The Negadon of a Conditional Statement;The Contrapositive
of a Conditional Statement;The Converse and Inverse of a
Conditional Statement;Only If and the Biconditional;Necessary and
Sufficient Conditions;Remarks
l. 3 Valid andInvalid Arguments 29
Modus Ponens and Modus Tollens;Additional Valid Argument
Forms:Rules of
Inference;Fallacies;Contradictions and Valid
Arguments;Summary of Rules of
Inference
1.4Application:Digital Logic Circuits 43
Black Boxesand Gates;The Input/Output for a Circuit;The
Boolean Expression Cor-
responding to a Circuit;The Circuit Corresponding to a
Boolean Expression;Finding
a CircuitThatCorresponds to a
GivenInput/OutputTable;Simplifying Combinational
Circuits;NAND and NOR Gares
1.5 Application:Number Systems and Circuits for Addition
57
Binary Representation of Numbers;Binary Addition and
Subtraction;Circuits for
Computer Addition;Two"s Complements and the Computer
Representation of Neg-
ativeIntegers;8-Bit Representation of a
Number;ComputerAddition with Negative
Integers;Hexadecimal Notation
Chapter 2 The Logic of Quantified Statements 75
2.1 Introduction to Predicates and Quantified Statements /
75
The Universal Quantifier:V:The Existential Quantifier:ョ
:Formal Versus Informal
Language;Universal Conditional Statements;Equivalent
Forms ofthe Universal and
Existential Statements;Implicit Quantification;Tarski"s
World
2.2 Introduction to Predicates and Quantified Statements II 88
Negations of Quantified Statements;Negations of Universal
Conditional Statements;The Relation among V,ョ,∧,and V;Vacuous
Truth of Universal Statements;Variants
0f Universal Conditional Statements;Necessal-y and
Sufficient Conditions,Only If
2.3 Statements Containing Multiple Quantifiers 97
Translating from Informal to Formal Language;Ambiguous
Language;Negations of Multiply.Quantified Statements;Older of
Quantifiers;Formal Logical Notation;Prolog
2. 4 Arguments with Quantified Statements 111
Universal MOdus Ponens;Use of Universal Modus Ponens in a
Proof;Universal Modus Tollens;proving Validity of Arguments with
Quantified Statements;Using Diagramsto
Test for Validity;Creating Additional Forms of Argument;Remark on
the Converse and Inverse Errors
Chapter 3 Elementary Number Theoryand Methods ofProof 125
3.1 Direct Proofand Counterexample h Introduction 126
Definitions;Provlag Existential Statements;Disproving
Universal Statements by
Counterexample;Proving Universal Statements;Directions
for Writing Proofs of
Universal Statements;Common Mistakes;Getting Proofs
Started;Showing That an
Existential Statement Is False;Conjecture,Proof,and
Disproof
3.2 Direct Proofand Counterexample II Rational Numbers 141
More on Generalizing from the Generic Particular;Proving
Properties of Rational
Numbers;Deriving New Mathematics from Old
3.3 Direct Proof and Counterexample IIh Divisibility 148
Pmving Properties of Divisibility;Counterexamples and
Divisibility;The Unique
Factorization Theorem
3.4 Direct Proof and Counterexample IV: Division into Cases
and the Quotient-Remainder Theorem 156
Discussion of the Quorient.Remainder Theorem and Examples
;d/v and mod;Alter-
native Representations of Integers and Applications to
Number Theory
3.5 Direct Proofand Counterexample V:Floorand Ceiling 164
Definition and Basic Properties;The Floor of n/2
3.6 Indirect Argument:Contradiction and Contraposition 171
Proof by Contradiction;Argument by
Contraposition;Relation between Proof by
ContradictionandProofbyContraposition;Proofas
aProblem-SolvingTool
3.7 Two Classica|Theorems 179
TheI~~ationality of√2:TheInfinitade ofthe set
ofPrimeNumbers;~~VhcutoUse
IndirectProof;OpenQuestionsinNumberTheory
3.8 Application:Algorithms 186
An Algorithmic Language;A Notation for Algorithms;Trace
Tables;The Division
Algorithm;The Eudidean Algorithm
Chapter 4 Sequences and MathematicalInduction 199
4.1 Sequences 199
Explicit Formulas for Sequences;Summation
Notation;Product Notation;Factorial
Notation;Properties ofSummations and Products;Change of
Variable;Sequences in
Computer Programming;Application:Algorithm to Convert
from Base 10 to Base 2
Using Repeated Division by 2
4.2 Mathematical Induction, 215
Principie of MathematicalInduction;SumoftheFi~~tnIntegers;
Sum of a Geometric
Sequence
4.3 Mathematical Induction II 227
ComparisonofMathematicalInductionandInductiveReasoning;Proving
Divisibility
Properties;Proving Inequalities
4.4 Strong Mathematical Inductiopand the Well-Ordering
Principle 235
The Principle of Strong Mathematical Induction;Binary
Representation of Integers;
The Well-Ordering Principle for the Integers
4.5 Application:Correctness ofAlgorithms 244
Assertions;Loop lnvariants;Correctness of the Division
Algorithm;Correctness of
the Euclidean Algorithm
Chapter 5 Set Theory 255
5.1 Basic Definitions of Set Theory 255
Subsets;Set Equality;Operations on Sets;Venn
Diagrams;The Empty Set;Partitions
of Sets;Power Sets;Cartesian Products;An Algorithm to
Check Whether One Set Is
a Subset ofAnother(Optional)
5.2 Properties of Sets 269
Set Identities;Proving Set Identities;Proving That a Set
Is the Empty Set
5.3 Disproofs,AlgebraicProofs.andBooleanAlgebras 282
DisprovinganAllegedSetProperty;Problem-Solving Strategy;
TheNumberofSub-
sets of a Set;"Algebraic"Proofs of Set
Identities;Boolean Algebras
5.4 Russell~~Paradox and the Halting Problem 293
Description of Russell"s Paradox;The Halting Problem
Chapter 6 Countingand Probability 297
6,1 Introduction 298
Definition ofSample Space and Event;Probability in the
Equally Likely Case;Count
-ing the Elements of Lists,Sublists,and One-Dimensional
Arrays
6.2 Possibility Trees and the Multiplication Rule 306
Possibility Trees;The Multiplication Role;When the
Multiplication Rule ls Difficult
or Impossible to Apply;Permutations;Permut~~ions of
Selected Elements
6.3 Counting Elements of Disjoint Sets:The Addition Rule
321
The Addition Rule;The Difference Rule;The
Inclusion/Exclusion Rule
6.4 Counting Subsets of a Set:Combinations 334
r-Combinations;Ordered and Unordered Selections;Relation
between Permutations
andCombinations;PermutationofaSetwithRepeatedElements;SomeAdvice
about
Counting
6.5 r-Combinations with Repetition AIIowed 349
Multisets and How to Count Them;Which Formula to Use?
6.6 The Algebra of Combinations 356
Combinatorial Formulas;Pascal"s Triangle;Algebmic and
Combinatorial Proofs of
Pascal"s Formula
6. 7 The Binomia|Theofem 362
Statement of the Theorem;Algebraic and Combinatorial
Proof;Applications
6.8 Probability Axioms and Expected Value 370
Probability Axioms;Deriving Additional Probability
Formulas;Expected Value
6.9 Conditional Probability,Bayes"Formula,and Independent
Even亡s 375
Conditional Probability;Bayes"Theorem;Independent Events
Chapter 7 Functions 389
7.1 Functions Defined on General Sets 389
DefinitionofFunction;ArrowDiagrams;FunctionMachines;ExamplesofFu
nctions;
Boolean Functions;Checking Whether a Function Is Well
Defined
7.2 One-to-One and Onto,Inverse Functions 402
One-to-One Functions;One-to-One Functions on Infinite Sets
;Application:Hash
Functions;OntoFunctions;OntoFunctionsonInfiniteSets;PropertiesOf
Exponential
and Logarithmic Functions;One-to-One
Correspondences;Inverse Function。
7.3 Application:The Pigeonhole Principle 420
Statement and Discussion of the
Principle;Applications;Decimal Expansions 0f
Fractions;Generalized Pigeonhole Principle;Proof of the
Pigeonhole Principle
7.4 Composition of Functions 431
Definition and Examples;Composition of One.to.One
Functions:Composition 0f
Onto Functions
7.5 Cardinality with Applications to Computability 443
DefinitionofCardinalEquivalence;CountableSets;The Search
for Larger Infinities:
The Cantor Diagonalization
Process;Application:Cardinality and Computabilitv
Chapter 8 Recursion 457
8.1 Recursively Defined Sequences 457
Definition of Recurrence
Relation;ExamplesofRecursivelyDefinedSeauences:The
NumberofPartitions ofaSetInto r Subsets
8.2 Solving Recurrence Relations by Iteration 475
The
MethodofIteration;UsingFormulastoSimplifySolutionsObtainedbyIterat
ion;
Checking the Correctness ofa Formula by Mathematical
Induction;Discovering That
an Explicit Formula Is Incorrect
8.3 Second-Order Linear Homogenous Recurrence Relations with
Constant Coefficients 487
Derivation of Technique for Solving These Relations;The
Distinct.RoOts Case:The
Single-Root Case
8.4 General Recursive Definitions 499
Recursively Defined Sets;Proving Properties about
Recursively Defined Sets:Re.
cursive Definitions of Sum,Product,Union,and
Intersection;Recursive Functions
Chapter 9 The EfficiencyofAlgorithms 510
9. 1 Real-Valued Functions ofa Real Variable and Their Graphs
510
Graph ofa Function;Power Functions;The Floor
Function;Graphing Functions De-
finedonSetsofIntegers;GraphofaMultipleofaFunction;IncreasingandDe
creasins
9.2 Ο.Ω.and ΘNotationS 518
Definition and General Properties of
0一.Ω一.and@-Notations;Orders of Power
Functions;OrdersofPolynomialFunctions;OrdersofFunctionsofIntegerV
ariables;
Extension to Functions Composed of Rational Power Functions
9.3 Application:Efficiency ofAlgorithms/ 531
Time Efficiency of an Algorithm;Computing"Orders of Simple
Algorithms;The
Sequential Search Algorithm;The Insertion Sort Algorithm
9.4 Exponential and Logarithmic Functions:Graphs andOrders
543
Graphs of Exponential and Logarithmic
Functions;Application:Number of Bits
Needed to Represent an Integer in Binary
Notation;Application:Using Logarithms
to Solve Recurrence Relations;Exponential and Logarithmic
Orders
9.5 Application:Efficiency ofAlgorithms II 557
Divide-and··Conquer Algorithms;The Efficiency of the
Binary Search Algorithm;
Merge Sort;Tractable and Intractable Problems;A Final
Remark on Algorithm Effi-ciency
Chapter 10 Relations 571
10.1 Relations on Sets 571
Definition of Binary Relation;An_0w Diagram of a Relation
;Relations and Func-
tions;The Inverse of a Relation;Directed Graph of a
Relation;N-ary Relations and
Relational Databases
10.2 Reflexivity,Symmetry,and Transitivity 584
Reflexive,Symmetric,andTransitiveProperties;TheTransitiveClosure
ofaRelation;
Properties of Relations on Infinite Sets
10.3 Equivalence Relations 594
The Relation Induced by a Partition;Definition of an
Equivalence Relation;Equiva-lence Classes of an Equivalence
Relation
10.4 Modular Arithmetic with Applications to Cryptography
611
Properties of Congruence Modulo n;Modular
Arithmetic;Finding an Inverse Modulo -n:Euclid"S Lemma;Fermat"S
Little Theorem and the Chinese Remainder Theorem;Why Does the RSA
Cipher Work?
10.5 Partia|Order Relations 632
Antisymmetry;Partial Order Relations;Lexicographic Order
;Hasse Diagrams;Par-
tially
andTotallyOrderedSets;TopologicalSorting;AnApplication;PERTandCP
M Chapter 11 Graphs and Trees 649
11.1 Graphs:An Introduction 649
Basic Terminology and Examples;Special Graphs;The
Concept of Degree
1 1.3 Matrix Representations of Graphs 683
Matnces;MatricesandDirectedGraphs;Matricesand(Undirected)Graphs:
Matrices
and Connected Components;MaRx Multiplication;Counting
walks of Length N
11.4 Isomorphism of Graphs 697
Definition of Graph Isomorphism and Examples;Isomorphic
Invariants:Graph Is0一
lnorphism for Simple Graph Definition and Examples ofTrees
;Characterizing Trees:Rooted Trees;Binary Trees
11. 6 Spanning Trees 723
Definition of a Spanni g Tree;Minimum Spanning
Trees;Kruskal,s A1gorithm:P
rim"s Algorithm
Chapter 12 RegularExpressionsandFinite.StateAutomata 734
12.1 Forma|Languages and Regular Expressions 735
Definitions and Exafnples 0f Formal Languages and Regular
Expressions:Practical
Uses of Regular Expressions Defin-ition 0f a Finite-State
Automaton;The Language Accepted by an Automaton:The
Eventual-State Function;Designing a Finite-State
Automaton;Simulating a Finite-State Automaton Using
Software;Finite-State Automata and Regular Expres.Sions;Regular
Languages
12.3 Simplifying Finite-State Automata 763
*-EquivalenceofStates;k一EquivalenceofStates;Finding
the*EquivalenceClasses:
The Quotient Automaton;Constmcting the Quotient
Automa——tonn-;Equivalent Au-"
AppendixA Properties ofthe Real Numbers A-1
Appendix B Solutions and Hints to Selected Exercises A-4~
^ 收 起
1.1 LogicalForm and LogicalEquivalence 1
Statements;CompoundStatements;TruthValues;EvaluatingtheTruthofMo
re General Compound Statements;Logical Equivalence;Tautologies
and Contradictions;Summary ofLogical Equivalences
1.2 Conditional Statements 17
Logical Equivalences Involving→:Representation ofIf-Then
As Or;The Negadon of a Conditional Statement;The Contrapositive
of a Conditional Statement;The Converse and Inverse of a
Conditional Statement;Only If and the Biconditional;Necessary and
Sufficient Conditions;Remarks
l. 3 Valid andInvalid Arguments 29
Modus Ponens and Modus Tollens;Additional Valid Argument
Forms:Rules of
Inference;Fallacies;Contradictions and Valid
Arguments;Summary of Rules of
Inference
1.4Application:Digital Logic Circuits 43
Black Boxesand Gates;The Input/Output for a Circuit;The
Boolean Expression Cor-
responding to a Circuit;The Circuit Corresponding to a
Boolean Expression;Finding
a CircuitThatCorresponds to a
GivenInput/OutputTable;Simplifying Combinational
Circuits;NAND and NOR Gares
1.5 Application:Number Systems and Circuits for Addition
57
Binary Representation of Numbers;Binary Addition and
Subtraction;Circuits for
Computer Addition;Two"s Complements and the Computer
Representation of Neg-
ativeIntegers;8-Bit Representation of a
Number;ComputerAddition with Negative
Integers;Hexadecimal Notation
Chapter 2 The Logic of Quantified Statements 75
2.1 Introduction to Predicates and Quantified Statements /
75
The Universal Quantifier:V:The Existential Quantifier:ョ
:Formal Versus Informal
Language;Universal Conditional Statements;Equivalent
Forms ofthe Universal and
Existential Statements;Implicit Quantification;Tarski"s
World
2.2 Introduction to Predicates and Quantified Statements II 88
Negations of Quantified Statements;Negations of Universal
Conditional Statements;The Relation among V,ョ,∧,and V;Vacuous
Truth of Universal Statements;Variants
0f Universal Conditional Statements;Necessal-y and
Sufficient Conditions,Only If
2.3 Statements Containing Multiple Quantifiers 97
Translating from Informal to Formal Language;Ambiguous
Language;Negations of Multiply.Quantified Statements;Older of
Quantifiers;Formal Logical Notation;Prolog
2. 4 Arguments with Quantified Statements 111
Universal MOdus Ponens;Use of Universal Modus Ponens in a
Proof;Universal Modus Tollens;proving Validity of Arguments with
Quantified Statements;Using Diagramsto
Test for Validity;Creating Additional Forms of Argument;Remark on
the Converse and Inverse Errors
Chapter 3 Elementary Number Theoryand Methods ofProof 125
3.1 Direct Proofand Counterexample h Introduction 126
Definitions;Provlag Existential Statements;Disproving
Universal Statements by
Counterexample;Proving Universal Statements;Directions
for Writing Proofs of
Universal Statements;Common Mistakes;Getting Proofs
Started;Showing That an
Existential Statement Is False;Conjecture,Proof,and
Disproof
3.2 Direct Proofand Counterexample II Rational Numbers 141
More on Generalizing from the Generic Particular;Proving
Properties of Rational
Numbers;Deriving New Mathematics from Old
3.3 Direct Proof and Counterexample IIh Divisibility 148
Pmving Properties of Divisibility;Counterexamples and
Divisibility;The Unique
Factorization Theorem
3.4 Direct Proof and Counterexample IV: Division into Cases
and the Quotient-Remainder Theorem 156
Discussion of the Quorient.Remainder Theorem and Examples
;d/v and mod;Alter-
native Representations of Integers and Applications to
Number Theory
3.5 Direct Proofand Counterexample V:Floorand Ceiling 164
Definition and Basic Properties;The Floor of n/2
3.6 Indirect Argument:Contradiction and Contraposition 171
Proof by Contradiction;Argument by
Contraposition;Relation between Proof by
ContradictionandProofbyContraposition;Proofas
aProblem-SolvingTool
3.7 Two Classica|Theorems 179
TheI~~ationality of√2:TheInfinitade ofthe set
ofPrimeNumbers;~~VhcutoUse
IndirectProof;OpenQuestionsinNumberTheory
3.8 Application:Algorithms 186
An Algorithmic Language;A Notation for Algorithms;Trace
Tables;The Division
Algorithm;The Eudidean Algorithm
Chapter 4 Sequences and MathematicalInduction 199
4.1 Sequences 199
Explicit Formulas for Sequences;Summation
Notation;Product Notation;Factorial
Notation;Properties ofSummations and Products;Change of
Variable;Sequences in
Computer Programming;Application:Algorithm to Convert
from Base 10 to Base 2
Using Repeated Division by 2
4.2 Mathematical Induction, 215
Principie of MathematicalInduction;SumoftheFi~~tnIntegers;
Sum of a Geometric
Sequence
4.3 Mathematical Induction II 227
ComparisonofMathematicalInductionandInductiveReasoning;Proving
Divisibility
Properties;Proving Inequalities
4.4 Strong Mathematical Inductiopand the Well-Ordering
Principle 235
The Principle of Strong Mathematical Induction;Binary
Representation of Integers;
The Well-Ordering Principle for the Integers
4.5 Application:Correctness ofAlgorithms 244
Assertions;Loop lnvariants;Correctness of the Division
Algorithm;Correctness of
the Euclidean Algorithm
Chapter 5 Set Theory 255
5.1 Basic Definitions of Set Theory 255
Subsets;Set Equality;Operations on Sets;Venn
Diagrams;The Empty Set;Partitions
of Sets;Power Sets;Cartesian Products;An Algorithm to
Check Whether One Set Is
a Subset ofAnother(Optional)
5.2 Properties of Sets 269
Set Identities;Proving Set Identities;Proving That a Set
Is the Empty Set
5.3 Disproofs,AlgebraicProofs.andBooleanAlgebras 282
DisprovinganAllegedSetProperty;Problem-Solving Strategy;
TheNumberofSub-
sets of a Set;"Algebraic"Proofs of Set
Identities;Boolean Algebras
5.4 Russell~~Paradox and the Halting Problem 293
Description of Russell"s Paradox;The Halting Problem
Chapter 6 Countingand Probability 297
6,1 Introduction 298
Definition ofSample Space and Event;Probability in the
Equally Likely Case;Count
-ing the Elements of Lists,Sublists,and One-Dimensional
Arrays
6.2 Possibility Trees and the Multiplication Rule 306
Possibility Trees;The Multiplication Role;When the
Multiplication Rule ls Difficult
or Impossible to Apply;Permutations;Permut~~ions of
Selected Elements
6.3 Counting Elements of Disjoint Sets:The Addition Rule
321
The Addition Rule;The Difference Rule;The
Inclusion/Exclusion Rule
6.4 Counting Subsets of a Set:Combinations 334
r-Combinations;Ordered and Unordered Selections;Relation
between Permutations
andCombinations;PermutationofaSetwithRepeatedElements;SomeAdvice
about
Counting
6.5 r-Combinations with Repetition AIIowed 349
Multisets and How to Count Them;Which Formula to Use?
6.6 The Algebra of Combinations 356
Combinatorial Formulas;Pascal"s Triangle;Algebmic and
Combinatorial Proofs of
Pascal"s Formula
6. 7 The Binomia|Theofem 362
Statement of the Theorem;Algebraic and Combinatorial
Proof;Applications
6.8 Probability Axioms and Expected Value 370
Probability Axioms;Deriving Additional Probability
Formulas;Expected Value
6.9 Conditional Probability,Bayes"Formula,and Independent
Even亡s 375
Conditional Probability;Bayes"Theorem;Independent Events
Chapter 7 Functions 389
7.1 Functions Defined on General Sets 389
DefinitionofFunction;ArrowDiagrams;FunctionMachines;ExamplesofFu
nctions;
Boolean Functions;Checking Whether a Function Is Well
Defined
7.2 One-to-One and Onto,Inverse Functions 402
One-to-One Functions;One-to-One Functions on Infinite Sets
;Application:Hash
Functions;OntoFunctions;OntoFunctionsonInfiniteSets;PropertiesOf
Exponential
and Logarithmic Functions;One-to-One
Correspondences;Inverse Function。
7.3 Application:The Pigeonhole Principle 420
Statement and Discussion of the
Principle;Applications;Decimal Expansions 0f
Fractions;Generalized Pigeonhole Principle;Proof of the
Pigeonhole Principle
7.4 Composition of Functions 431
Definition and Examples;Composition of One.to.One
Functions:Composition 0f
Onto Functions
7.5 Cardinality with Applications to Computability 443
DefinitionofCardinalEquivalence;CountableSets;The Search
for Larger Infinities:
The Cantor Diagonalization
Process;Application:Cardinality and Computabilitv
Chapter 8 Recursion 457
8.1 Recursively Defined Sequences 457
Definition of Recurrence
Relation;ExamplesofRecursivelyDefinedSeauences:The
NumberofPartitions ofaSetInto r Subsets
8.2 Solving Recurrence Relations by Iteration 475
The
MethodofIteration;UsingFormulastoSimplifySolutionsObtainedbyIterat
ion;
Checking the Correctness ofa Formula by Mathematical
Induction;Discovering That
an Explicit Formula Is Incorrect
8.3 Second-Order Linear Homogenous Recurrence Relations with
Constant Coefficients 487
Derivation of Technique for Solving These Relations;The
Distinct.RoOts Case:The
Single-Root Case
8.4 General Recursive Definitions 499
Recursively Defined Sets;Proving Properties about
Recursively Defined Sets:Re.
cursive Definitions of Sum,Product,Union,and
Intersection;Recursive Functions
Chapter 9 The EfficiencyofAlgorithms 510
9. 1 Real-Valued Functions ofa Real Variable and Their Graphs
510
Graph ofa Function;Power Functions;The Floor
Function;Graphing Functions De-
finedonSetsofIntegers;GraphofaMultipleofaFunction;IncreasingandDe
creasins
9.2 Ο.Ω.and ΘNotationS 518
Definition and General Properties of
0一.Ω一.and@-Notations;Orders of Power
Functions;OrdersofPolynomialFunctions;OrdersofFunctionsofIntegerV
ariables;
Extension to Functions Composed of Rational Power Functions
9.3 Application:Efficiency ofAlgorithms/ 531
Time Efficiency of an Algorithm;Computing"Orders of Simple
Algorithms;The
Sequential Search Algorithm;The Insertion Sort Algorithm
9.4 Exponential and Logarithmic Functions:Graphs andOrders
543
Graphs of Exponential and Logarithmic
Functions;Application:Number of Bits
Needed to Represent an Integer in Binary
Notation;Application:Using Logarithms
to Solve Recurrence Relations;Exponential and Logarithmic
Orders
9.5 Application:Efficiency ofAlgorithms II 557
Divide-and··Conquer Algorithms;The Efficiency of the
Binary Search Algorithm;
Merge Sort;Tractable and Intractable Problems;A Final
Remark on Algorithm Effi-ciency
Chapter 10 Relations 571
10.1 Relations on Sets 571
Definition of Binary Relation;An_0w Diagram of a Relation
;Relations and Func-
tions;The Inverse of a Relation;Directed Graph of a
Relation;N-ary Relations and
Relational Databases
10.2 Reflexivity,Symmetry,and Transitivity 584
Reflexive,Symmetric,andTransitiveProperties;TheTransitiveClosure
ofaRelation;
Properties of Relations on Infinite Sets
10.3 Equivalence Relations 594
The Relation Induced by a Partition;Definition of an
Equivalence Relation;Equiva-lence Classes of an Equivalence
Relation
10.4 Modular Arithmetic with Applications to Cryptography
611
Properties of Congruence Modulo n;Modular
Arithmetic;Finding an Inverse Modulo -n:Euclid"S Lemma;Fermat"S
Little Theorem and the Chinese Remainder Theorem;Why Does the RSA
Cipher Work?
10.5 Partia|Order Relations 632
Antisymmetry;Partial Order Relations;Lexicographic Order
;Hasse Diagrams;Par-
tially
andTotallyOrderedSets;TopologicalSorting;AnApplication;PERTandCP
M Chapter 11 Graphs and Trees 649
11.1 Graphs:An Introduction 649
Basic Terminology and Examples;Special Graphs;The
Concept of Degree
1 1.3 Matrix Representations of Graphs 683
Matnces;MatricesandDirectedGraphs;Matricesand(Undirected)Graphs:
Matrices
and Connected Components;MaRx Multiplication;Counting
walks of Length N
11.4 Isomorphism of Graphs 697
Definition of Graph Isomorphism and Examples;Isomorphic
Invariants:Graph Is0一
lnorphism for Simple Graph Definition and Examples ofTrees
;Characterizing Trees:Rooted Trees;Binary Trees
11. 6 Spanning Trees 723
Definition of a Spanni g Tree;Minimum Spanning
Trees;Kruskal,s A1gorithm:P
rim"s Algorithm
Chapter 12 RegularExpressionsandFinite.StateAutomata 734
12.1 Forma|Languages and Regular Expressions 735
Definitions and Exafnples 0f Formal Languages and Regular
Expressions:Practical
Uses of Regular Expressions Defin-ition 0f a Finite-State
Automaton;The Language Accepted by an Automaton:The
Eventual-State Function;Designing a Finite-State
Automaton;Simulating a Finite-State Automaton Using
Software;Finite-State Automata and Regular Expres.Sions;Regular
Languages
12.3 Simplifying Finite-State Automata 763
*-EquivalenceofStates;k一EquivalenceofStates;Finding
the*EquivalenceClasses:
The Quotient Automaton;Constmcting the Quotient
Automa——tonn-;Equivalent Au-"
AppendixA Properties ofthe Real Numbers A-1
Appendix B Solutions and Hints to Selected Exercises A-4~
^ 收 起
目 录内容简介
本书从Thomson Learning出版公司引进。本书内容包括:复合陈述中的逻辑,定量陈述中的逻辑,基础数论及证明方法,数理推断及序列,集合论,计算和概率,函数,递归,运算法则及效率,关系,图和树,常规表达式和自动控制。
本书可作为高等院校理工科专业学生作为离散数学双语教材使用,与其同类教材相比;本书有以下几个突出的特点:1.着重逻辑推理;2.以螺旋前进的方式介绍并运用概念,便于学生了解及进一步掌握;3.大量的图表便于学生直观理解;4.习题配置合理,书后给出了习题答案.5.有与本书配套的网络资源。
本书叙述详尽、语言表达流畅,适合于理工科各专业学生作为双语教材使用,也可供教师教学参考。
本书可作为高等院校理工科专业学生作为离散数学双语教材使用,与其同类教材相比;本书有以下几个突出的特点:1.着重逻辑推理;2.以螺旋前进的方式介绍并运用概念,便于学生了解及进一步掌握;3.大量的图表便于学生直观理解;4.习题配置合理,书后给出了习题答案.5.有与本书配套的网络资源。
本书叙述详尽、语言表达流畅,适合于理工科各专业学生作为双语教材使用,也可供教师教学参考。
比价列表
1人想要
公众号、微信群
缺书网
微信公众号
微信公众号
扫码进群
实时获取购书优惠
实时获取购书优惠