PREFACE.
GUIDE TO THE READER
PROLOGUE
Ⅰ.REAL=VARIABLE THEORY
1.Basic assumptions
2.Examples
3.Covering lemmas and the maximal function
4.Generalization of the Calderdn-Zygmund decomposition
5.Singular integrals
6.Examples of the general theory
7.Appendix: Truncation of singular integrals
8.Further results
Ⅱ.MORE ABOUT MAXIMAL FUNCTIONS
1.Vector-valued maximal functions
2.Nontangential behavior and Carleson measures
3.Two applications
4.Singular approximations of the identity
5.Further results
Ⅲ.HARDY SPACES
1.Maximal characterization of Hp
2.Atomic decomposition for Hp
3.Singular integrals
4.Appendix:Relation with harmonic function
5.Further result
Ⅳ.H1 AND BMO
1.The space of functions of bounded mean oscillation
2.The sharp function
3.An elementary approach and a dyadic version
4.Further propeties of BMO
5.An interpolation theorem
6.Further results
Ⅴ.WEIGHTED INEQUALITIES
Ⅵ.PSEUDO-DIFFERENTIAL AND SINGULAR INTEGRAL OPERATORS:FOURIEV INTEGRAL
Ⅶ.PSEUDO-DIFFERENTIAL AND SINGULAR INTEGRAL
Ⅷ.OSCILLATORY INTEGRALS OF THE FIRST KIND
Ⅸ.OSCILLATORY INTEGRALS OF THE SECOND KING
Ⅹ.MAXIMAL OPERATORS:SOME EXAMPLES
Ⅺ.MAXIMAL AVERAGES AND OSCILLATORY INTEGRALS
Ⅻ.INTRODUCTION TO THE HEISENBERG GROUP
XIII.MORE ABOUT THE HEISENBERG GROUP
BIBLIOGRAPHY
AUTHOR INDEX
SUBJECT INDEX
^ 收 起