Chapter 1 Introduction
Chapter 2 A Brief Account on Backlund rlyansformations
2.1 A Warm-Up Approach
2.2 Chen's Method
2.3 Clairin's Method
2.4 Hirota's Bilinear Operator Method
2.5 Wahlquist-Estabrook Procedure
Chapter 3 Nonlinear Schrodinger Equation
3.1 Physical Background
3.2 Lax Pair and Floquet Theory
3.3 Darboux rlyansformations and Homoclinic Orbit
3.4 Linear Instability
3.5 Quadratic Products of Eigenfunctions
3.6 Melnikov Vectors
3.7 Melnikov Integrals
Chapter 4 Sine-Gordon Equation
4.1 Background
4.2 Lax Pair
4.3 Darboux Transformations
4.4 Melnikov Vectors
4.5 Heteroclinic Cycle
4.6 Melnikov Vectors Along the Heteroclinic Cycle
Chapter 5 Heisenberg Ferromagnet Equation
5.1 Background
5.2 Lax Pair
5.3 Darboux Transformations
5.4 Figure Eight Structures Connecting to the Domain Wall
5.5 Floquet Theory
5.6 Melnikov Vectors
5.7 Melnikov Vectors Along the Figure Eight Structures
5.8 A Melnikov Function for Landau-Lifshitz-Gilbert Equation
Chapter 6 Vector Nonlinear Schrodinger Equations
6.1 Physical Background
6.2 Lax Pair
6.3 Linearized Equations
6.4 Homoclinic Orbits and Figure Eight Structures
6.5 A Melnikov Vector
Chapter 7 Derivative Nonlinear Schrodinger Equations
7.1 Physical Background
7.2 Lax Pair
7.3 Darboux Transformations
7.4 Floquet Theory
7.5 Strange Tori
7.6 Whisker of the Strange T2
7.7 Whisker of the Circle
7.8 Diffusion
7.9 Diffusion Along the Strange T2
7.10 Diffusion Along the Whisker of the Circle
Chapter 8 Discrete Nonlinear Schrodinger Equation
8.1 Background
8.2 Hamiltonian Structure
8.3 Lax Pair and Floquet Theory
8.4 Examples of Floquet Spectra
8.5 Melnikov Vectors
8.6 Darboux Transformations
8.7 Homoclinic Orbits and Melnikov Vectors
Chapter 9 Davey-Stewartson II Equation
9.1 Background
9.2 Linear Stability
9.3 Lax Pair and Darboux Transformations
9.4 Homoclinic Orbits
9.5 Melnikov Vectors
9.5.1 Melnikov Integrals
9.5.2 An Example
9.6 Extra Comments
Chapter 10 Acoustic Spectral Problem
10.1 Physical Background
10.2 Connection with Linear Schrodinger Operator
10.3 Discrete Symmetries of the Acoustic Problem
……
Chapter 11 SUSY and Spectrum Reconstructions
Chapter 12 Darboux Transformations for Dirac Equation
Chapter 13 Moutard Transformations for the 2D and 3D
Chapter 14 BLP Equation
Chapter 15 Goursat Equation
Chapter 16 Links Among Integrable Systems
Bibliography
Index