计算光子学:MATLAB导论 [Computational Photonics an Introduction With MATLAB]
目 录内容简介
目录
第1章 绪言 1
1.1 什么是光子学 1
1.2 什么是计算光子学 3
1.2.1 计算光子学和计算电磁学的方法 3
1.2.2 计算纳米光子学 3
1.2.3 光电商用软件一览 4
1.3 光纤通信 5
1.3.1 光纤通信的简介 5
1.3.2 通信简史 5
查看完整
第1章 绪言 1
1.1 什么是光子学 1
1.2 什么是计算光子学 3
1.2.1 计算光子学和计算电磁学的方法 3
1.2.2 计算纳米光子学 3
1.2.3 光电商用软件一览 4
1.3 光纤通信 5
1.3.1 光纤通信的简介 5
1.3.2 通信简史 5
查看完整
目 录内容简介
《计算光子学——MATLAB导论》是光电子学和光电器件理论系统化和计算图像化的新专著《计算光子学——MATLAB导论》从光学和电磁场基础理论讲起,逐一讨论了激光束在光波导和线状光纤中的传播模式和特性,以及激光器、光接收器,各种光放大器以及波分多路和光链接,最后,《计算光子学——MATLAB导论》论述了光孤子、人阳能光电池和最近几年才出现的超材料。《计算光子学——MATLAB导论》不仅有系统的光了学的理论和计算公式,而且通过Matlab进行各种仿真计算,获得了激光束在波导和光纤中传播以及光放大器工作时的效果图,《计算光子学——MATLAB导论》收录了60多个存Matlab中使用的编程,可供读者学习使用。
目 录内容简介
目录
第1章 绪言 1
1.1 什么是光子学 1
1.2 什么是计算光子学 3
1.2.1 计算光子学和计算电磁学的方法 3
1.2.2 计算纳米光子学 3
1.2.3 光电商用软件一览 4
1.3 光纤通信 5
1.3.1 光纤通信的简介 5
1.3.2 通信简史 5
1.3.3 光纤的发展 8
1.3.4 与电传输的比较 9
1.3.5 管理标准 10
1.3.6 波分复用 10
1.3.7 孤子 11
1.4 生物和医学光子学 12
1.5 光子传感器 12
1.6 硅光子学 13
1.7 光量子信息科学 13
参考文献 13
第2章 光学的基本知识 17
2.1 几何光学 17
2.1.1 射线理论及其应用 17
2.1.2 临界角 18
2.1.3 透镜 19
2.1.4 折射率梯度变化系统 20
2.2 波动光学 21
2.2.1 相速度 23
2.2.2 群速度 23
2.2.3 斯托克斯关系 25
2.2.4 电介质薄膜中的干涉 26
2.2.5 平板中光束的多次干涉 28
2.2.6 法布里珀罗干涉仪 30
2.3 习题 31
附录2A:本章Matlab的函数清单和代码 32
参考文献 35
第3章 电磁学基础 36
3.1 麦克斯韦方程组 36
3.2 边界条件 37
3.2.1 电场边界条件 38
3.2.2 磁场边界条件 39
3.3 波动方程 40
3.4 时谐场 40
3.5 偏振波 43
3.5.1 线偏振波 43
3.5.2 圆偏振和椭圆偏振波 44
3.6 菲涅耳系数和相位 45
3.6.1 TE偏振 46
3.6.2 TM偏振 49
3.7 电介质界面反射造成的偏振 50
3.8 抗反射涂层 52
3.9 布拉格镜 57
3.10 古斯汉欣位移 62
3.11 坡印亭定理 63
3.12 习题 64
3.13 课题 65
附录3A:本章Matlab的函数清单和代码 65
参考文献 68
第4章 平板波导 69
4.1 平板波导的射线光学 69
4.1.1 数值孔径 69
4.1.2 导波模式 70
4.1.3 横向共振条件 71
4.1.4 横向条件归 化形式 72
4.2 电介质波导的电磁学理论基础 74
4.2.1 一般性讨论 74
4.2.2 通用方程的简约形式 76
4.3 平面宽波导的波动方程 77
4.4 三层对称的导波结构(TE模式) 78
4.4.1 算法 81
4.5 维任意三层不对称平面波导的模式 81
4.5.1 TE模式 81
4.5.2 TE模式的场分布 83
4.6 一维方法处理多层平板波导 86
4.6.1 TE模式 86
4.6.2 传播常数 89
4.6.3 电场 91
4.6.4 TM模式 91
4.7 一维方式的实例 92
4.7.1 四层无衰减波导 92
4.7.2 六层耗散波导 92
4.7.3 维瑟结构 94
4.8 二维结构 95
4.9 习题 98
4.10 课题 98
附录4A:本章Matlab的函数清单和代码 99
参考文献 113
第5章 线性光纤和信号退化 115
5.1 几何光学概述 115
5.1.1 数值孔径(NA) 116
5.1.2 多路径色散 117
5.1.3 光纤的信息运载能力 117
5.1.4 硅光纤的损耗机制 118
5.1.5 固有损耗 119
5.1.6 外在损耗 119
5.2 柱坐标中的光纤模式 119
5.2.1 柱坐标中的麦克斯韦方程 120
5.2.2 柱坐标的波动方程 121
5.2.3 柱坐标中波动方程的解 122
5.2.4 边界条件和模式方程 125
5.2.5 模式分类 126
5.2.6 几种导波模式和它们的特征方程 126
5.2.7 弱导波近似 129
5.2.8 基模HE11的通用关系 131
5.2.9 单模光纤的截止波长 132
5.2.10 单模光纤中的电场分布 134
5.3 色散 136
5.3.1 群延时的概论 136
5.3.2 材料色散:谢米尔方程 137
5.3.3 波导色散 138
5.4 传播中的脉冲色散 139
5.5 习题 141
5.6 课题 141
附录5A:贝塞尔函数的特性 141
附录5B:特征行列式 142
附录5C:本章Matlab的函数清单和代码 144
参考文献 155
第6章 线性脉冲的传播 157
6.1 基本脉冲 157
6.1.1 矩形脉冲 157
6.1.2 高斯脉冲 159
6.1.3 超高斯脉冲 160
6.1.4 啁啾高斯脉冲 160
6.2 半导体激光器的调制 161
6.2.1 调制制式 162
6.2.2 波形的建立 164
6.3 存在色散时脉冲传播方程的简单推导 165
6.4 线性脉冲的数学理论 167
6.5 脉冲的传播 171
6.5.1 啁啾高斯脉冲传播的分析 171
6.5.2 傅里叶变换的数值方法 172
6.5.3 傅里叶分步变换法 174
6.6 习题 176
附录6A:本章Matlab的函数清单和代码 176
参考文献 189
第7章 光源 190
7.1 激光器的概论 190
7.1.1 TLS中的跃迁 192
7.1.2 激光振荡和谐振模式 193
7.2 半导体激光器 195
7.2.1 半导体中的电子跃迁 197
7.2.2 同质pn结 199
7.2.3 异质结构 200
7.2.4 光学增益 202
7.2.5 确定光增益 203
7.3 速率方程 205
7.3.1 载流子 206
7.3.2 光子 206
7.3.3 速率方程参数 207
7.3.4 电场速率方程的推导 208
7.4 速率方程的分析 211
7.4.1 稳态分析 211
7.4.2 线性增益模式的小信号分析 211
7.4.3 增益饱和时的小信号分析 213
7.4.4 量子阱激光器的大信号分析 216
7.4.5 频率啁啾 216
7.4.6 等效电路模式 217
7.4.7 体激光器的等效电路 217
7.5 激光调Q技术 220
7.6 习题 221
7.7 课题 221
附录7A:本章Matlab的函数清单和代码 221
参考文献 230
第8章 光放大器相掺铒光纤放大器 233
8.1 一般特性 235
8.1.1 增益谱和带宽 235
8.1.2 增益饱和 237
8.1.3 放大器噪声 238
8.2 掺铒光纤放大器(EDFA) 239
8.2.1 稳态分析 241
8.2.2 有效的二能级方法 241
8.3 掺铒光纤放大器的增益特性 242
8.4 习题 244
8.5 课题 245
附录8A:本章Matlab的函数清单和代码 245
参考文献 252
第9章 半导体光放大器(SOA) 254
9.1 一般性讨论 254
9.1.1 具有小端面反射率的SOA增益公式 255
9.1.2 小端面反射率的影响 258
9.2 SOA脉冲传播速率方程 259
9.3 SOA的设计 262
9.4 SOA的应用 264
9.4.1 波长转换 264
9.4.2 基于干涉原理的全光学逻辑 265
9.5 习题 266
9.6 课题 267
附录9A:本章Matlab的函数清单和代码 267
参考文献 268
第10章 光接收器件 270
10.1 主要特征 271
10.1.1 接收器灵敏度 271
10.1.2 动态范围 271
10.1.3 比特率透明度 271
10.1.4 比特图的独立性 271
10.2 光检测器 271
10.2.1 光检测原理 272
10.2.2 光检测器的性能参数 275
10.2.3 光检测器噪声 277
10.2.4 检测器的设计 279
10.3 接收器之分析 280
10.3.1 理想光接收器的比特误差 281
10.3.2 接收器的误差概率 282
10.3.3 比特误码率和高斯噪声 284
10.4 光电接收器的建模 287
10.5 习题 287
10.6 课题 287
附录10A:本章Matlab的函数清单和代码 288
参考文献 289
第11章 时域有限差分法 291
11.1 通用公式 291
11.1.1 三维公式 292
11.1.2 二维公式 292
11.1.3 一维模型 293
11.1.4 高斯脉冲和调制高斯脉冲 294
11.2 无色散时的一维叶氏算法 295
11.2.1 无损耗情况 295
11.2.2 确定网格尺度 297
11.2.3 色散与稳定性 298
11.2.4 稳定性判据 300
11.2.5 维有损耗模式 300
11.3 一维边界条件 301
11.3.1 穆尔一阶吸收边界条件(ABC) 301
11.3.2 一 维二阶边界条件 303
11.4 二维无色散的叶氏算法 305
11.5 二维吸收边界条件 307
11.6 色散 309
11.7 习题 310
11.8 课题 310
附录11A:本章Matlab的函数清单和代码 311
参考文献 317
第12章 波束传播法(BPM) 318
12.1 傍轴会式 319
12.1.1 引言 319
12.1.2 运算子和 320
12.1.3 傅里叶变换分步法的实施 321
12.2 一般理论 323
12.2.1 绪论 323
12.2.2 慢变化包络近似(SVEA) 325
12.2.3 半矢量BPM 327
12.2.4 标量公式 327
12.2.5 有限差分(FD)近似 327
12.3 1+1维有限差分波束传播法公式 328
12.3.1 简单近似 329
12.3.2 传播运算子方法 329
12.3.3 透明边界条件 334
12.4 结束语 336
12.5 习题 337
12.6 课题 337
附录12A:FD-BPM方程的推导细节 337
附录12B:本章Matlab的函数清单和代码 340
参考文献 345
第13章 波分复用(WDM)器件 347
13.1 WDM系统之基本 347
13.2 基本的WDM技术 348
13.2.1 光纤布拉格光栅 348
13.2.2 阵列波导栅格 349
13.2.3 耦合器和
^ 收 起
第1章 绪言 1
1.1 什么是光子学 1
1.2 什么是计算光子学 3
1.2.1 计算光子学和计算电磁学的方法 3
1.2.2 计算纳米光子学 3
1.2.3 光电商用软件一览 4
1.3 光纤通信 5
1.3.1 光纤通信的简介 5
1.3.2 通信简史 5
1.3.3 光纤的发展 8
1.3.4 与电传输的比较 9
1.3.5 管理标准 10
1.3.6 波分复用 10
1.3.7 孤子 11
1.4 生物和医学光子学 12
1.5 光子传感器 12
1.6 硅光子学 13
1.7 光量子信息科学 13
参考文献 13
第2章 光学的基本知识 17
2.1 几何光学 17
2.1.1 射线理论及其应用 17
2.1.2 临界角 18
2.1.3 透镜 19
2.1.4 折射率梯度变化系统 20
2.2 波动光学 21
2.2.1 相速度 23
2.2.2 群速度 23
2.2.3 斯托克斯关系 25
2.2.4 电介质薄膜中的干涉 26
2.2.5 平板中光束的多次干涉 28
2.2.6 法布里珀罗干涉仪 30
2.3 习题 31
附录2A:本章Matlab的函数清单和代码 32
参考文献 35
第3章 电磁学基础 36
3.1 麦克斯韦方程组 36
3.2 边界条件 37
3.2.1 电场边界条件 38
3.2.2 磁场边界条件 39
3.3 波动方程 40
3.4 时谐场 40
3.5 偏振波 43
3.5.1 线偏振波 43
3.5.2 圆偏振和椭圆偏振波 44
3.6 菲涅耳系数和相位 45
3.6.1 TE偏振 46
3.6.2 TM偏振 49
3.7 电介质界面反射造成的偏振 50
3.8 抗反射涂层 52
3.9 布拉格镜 57
3.10 古斯汉欣位移 62
3.11 坡印亭定理 63
3.12 习题 64
3.13 课题 65
附录3A:本章Matlab的函数清单和代码 65
参考文献 68
第4章 平板波导 69
4.1 平板波导的射线光学 69
4.1.1 数值孔径 69
4.1.2 导波模式 70
4.1.3 横向共振条件 71
4.1.4 横向条件归 化形式 72
4.2 电介质波导的电磁学理论基础 74
4.2.1 一般性讨论 74
4.2.2 通用方程的简约形式 76
4.3 平面宽波导的波动方程 77
4.4 三层对称的导波结构(TE模式) 78
4.4.1 算法 81
4.5 维任意三层不对称平面波导的模式 81
4.5.1 TE模式 81
4.5.2 TE模式的场分布 83
4.6 一维方法处理多层平板波导 86
4.6.1 TE模式 86
4.6.2 传播常数 89
4.6.3 电场 91
4.6.4 TM模式 91
4.7 一维方式的实例 92
4.7.1 四层无衰减波导 92
4.7.2 六层耗散波导 92
4.7.3 维瑟结构 94
4.8 二维结构 95
4.9 习题 98
4.10 课题 98
附录4A:本章Matlab的函数清单和代码 99
参考文献 113
第5章 线性光纤和信号退化 115
5.1 几何光学概述 115
5.1.1 数值孔径(NA) 116
5.1.2 多路径色散 117
5.1.3 光纤的信息运载能力 117
5.1.4 硅光纤的损耗机制 118
5.1.5 固有损耗 119
5.1.6 外在损耗 119
5.2 柱坐标中的光纤模式 119
5.2.1 柱坐标中的麦克斯韦方程 120
5.2.2 柱坐标的波动方程 121
5.2.3 柱坐标中波动方程的解 122
5.2.4 边界条件和模式方程 125
5.2.5 模式分类 126
5.2.6 几种导波模式和它们的特征方程 126
5.2.7 弱导波近似 129
5.2.8 基模HE11的通用关系 131
5.2.9 单模光纤的截止波长 132
5.2.10 单模光纤中的电场分布 134
5.3 色散 136
5.3.1 群延时的概论 136
5.3.2 材料色散:谢米尔方程 137
5.3.3 波导色散 138
5.4 传播中的脉冲色散 139
5.5 习题 141
5.6 课题 141
附录5A:贝塞尔函数的特性 141
附录5B:特征行列式 142
附录5C:本章Matlab的函数清单和代码 144
参考文献 155
第6章 线性脉冲的传播 157
6.1 基本脉冲 157
6.1.1 矩形脉冲 157
6.1.2 高斯脉冲 159
6.1.3 超高斯脉冲 160
6.1.4 啁啾高斯脉冲 160
6.2 半导体激光器的调制 161
6.2.1 调制制式 162
6.2.2 波形的建立 164
6.3 存在色散时脉冲传播方程的简单推导 165
6.4 线性脉冲的数学理论 167
6.5 脉冲的传播 171
6.5.1 啁啾高斯脉冲传播的分析 171
6.5.2 傅里叶变换的数值方法 172
6.5.3 傅里叶分步变换法 174
6.6 习题 176
附录6A:本章Matlab的函数清单和代码 176
参考文献 189
第7章 光源 190
7.1 激光器的概论 190
7.1.1 TLS中的跃迁 192
7.1.2 激光振荡和谐振模式 193
7.2 半导体激光器 195
7.2.1 半导体中的电子跃迁 197
7.2.2 同质pn结 199
7.2.3 异质结构 200
7.2.4 光学增益 202
7.2.5 确定光增益 203
7.3 速率方程 205
7.3.1 载流子 206
7.3.2 光子 206
7.3.3 速率方程参数 207
7.3.4 电场速率方程的推导 208
7.4 速率方程的分析 211
7.4.1 稳态分析 211
7.4.2 线性增益模式的小信号分析 211
7.4.3 增益饱和时的小信号分析 213
7.4.4 量子阱激光器的大信号分析 216
7.4.5 频率啁啾 216
7.4.6 等效电路模式 217
7.4.7 体激光器的等效电路 217
7.5 激光调Q技术 220
7.6 习题 221
7.7 课题 221
附录7A:本章Matlab的函数清单和代码 221
参考文献 230
第8章 光放大器相掺铒光纤放大器 233
8.1 一般特性 235
8.1.1 增益谱和带宽 235
8.1.2 增益饱和 237
8.1.3 放大器噪声 238
8.2 掺铒光纤放大器(EDFA) 239
8.2.1 稳态分析 241
8.2.2 有效的二能级方法 241
8.3 掺铒光纤放大器的增益特性 242
8.4 习题 244
8.5 课题 245
附录8A:本章Matlab的函数清单和代码 245
参考文献 252
第9章 半导体光放大器(SOA) 254
9.1 一般性讨论 254
9.1.1 具有小端面反射率的SOA增益公式 255
9.1.2 小端面反射率的影响 258
9.2 SOA脉冲传播速率方程 259
9.3 SOA的设计 262
9.4 SOA的应用 264
9.4.1 波长转换 264
9.4.2 基于干涉原理的全光学逻辑 265
9.5 习题 266
9.6 课题 267
附录9A:本章Matlab的函数清单和代码 267
参考文献 268
第10章 光接收器件 270
10.1 主要特征 271
10.1.1 接收器灵敏度 271
10.1.2 动态范围 271
10.1.3 比特率透明度 271
10.1.4 比特图的独立性 271
10.2 光检测器 271
10.2.1 光检测原理 272
10.2.2 光检测器的性能参数 275
10.2.3 光检测器噪声 277
10.2.4 检测器的设计 279
10.3 接收器之分析 280
10.3.1 理想光接收器的比特误差 281
10.3.2 接收器的误差概率 282
10.3.3 比特误码率和高斯噪声 284
10.4 光电接收器的建模 287
10.5 习题 287
10.6 课题 287
附录10A:本章Matlab的函数清单和代码 288
参考文献 289
第11章 时域有限差分法 291
11.1 通用公式 291
11.1.1 三维公式 292
11.1.2 二维公式 292
11.1.3 一维模型 293
11.1.4 高斯脉冲和调制高斯脉冲 294
11.2 无色散时的一维叶氏算法 295
11.2.1 无损耗情况 295
11.2.2 确定网格尺度 297
11.2.3 色散与稳定性 298
11.2.4 稳定性判据 300
11.2.5 维有损耗模式 300
11.3 一维边界条件 301
11.3.1 穆尔一阶吸收边界条件(ABC) 301
11.3.2 一 维二阶边界条件 303
11.4 二维无色散的叶氏算法 305
11.5 二维吸收边界条件 307
11.6 色散 309
11.7 习题 310
11.8 课题 310
附录11A:本章Matlab的函数清单和代码 311
参考文献 317
第12章 波束传播法(BPM) 318
12.1 傍轴会式 319
12.1.1 引言 319
12.1.2 运算子和 320
12.1.3 傅里叶变换分步法的实施 321
12.2 一般理论 323
12.2.1 绪论 323
12.2.2 慢变化包络近似(SVEA) 325
12.2.3 半矢量BPM 327
12.2.4 标量公式 327
12.2.5 有限差分(FD)近似 327
12.3 1+1维有限差分波束传播法公式 328
12.3.1 简单近似 329
12.3.2 传播运算子方法 329
12.3.3 透明边界条件 334
12.4 结束语 336
12.5 习题 337
12.6 课题 337
附录12A:FD-BPM方程的推导细节 337
附录12B:本章Matlab的函数清单和代码 340
参考文献 345
第13章 波分复用(WDM)器件 347
13.1 WDM系统之基本 347
13.2 基本的WDM技术 348
13.2.1 光纤布拉格光栅 348
13.2.2 阵列波导栅格 349
13.2.3 耦合器和
^ 收 起
目 录内容简介
《计算光子学——MATLAB导论》是光电子学和光电器件理论系统化和计算图像化的新专著《计算光子学——MATLAB导论》从光学和电磁场基础理论讲起,逐一讨论了激光束在光波导和线状光纤中的传播模式和特性,以及激光器、光接收器,各种光放大器以及波分多路和光链接,最后,《计算光子学——MATLAB导论》论述了光孤子、人阳能光电池和最近几年才出现的超材料。《计算光子学——MATLAB导论》不仅有系统的光了学的理论和计算公式,而且通过Matlab进行各种仿真计算,获得了激光束在波导和光纤中传播以及光放大器工作时的效果图,《计算光子学——MATLAB导论》收录了60多个存Matlab中使用的编程,可供读者学习使用。
比价列表