机器人学、机器视觉与控制——MATLAB算法基础
第1章 绪言
1.1 关于本书
1.1.1 MATLAB软件
1.1.2 读者对象及知识
1.1.3 符号与约定
1.1.4 怎样使用本书
1.1.5 使用本书教学
1.1.6 本书梗概
部分 基 础 知 识
第2章 位置与姿态描述
查看完整
1.1 关于本书
1.1.1 MATLAB软件
1.1.2 读者对象及知识
1.1.3 符号与约定
1.1.4 怎样使用本书
1.1.5 使用本书教学
1.1.6 本书梗概
部分 基 础 知 识
第2章 位置与姿态描述
查看完整
本书是关于机器人学和机器视觉的实用参考书, 部分“基础知识”(第2章和第3章)介绍机器人及其操作对象的位置和姿态描述,以及机器人路径和运动的表示方法;第二部分“移动机器人”(第4章至第6章)介绍其基本运动控制模式及其导航和定位方法;第三部分“臂型机器人”(第7章至第9章)介绍其运动学、动力学和控制方面的知识;第四部分“计算机视觉”(第10章至第14章)包括光照与色彩,图像形成和处理技术,图像特征提取,以及基于多幅图像的立体视觉技术;第五部分“机器人学、 视学与控制”(第15章和第16章)分别讨论基于位置和基于图像的视觉伺服及更先进的混合视觉伺服方法。本书将机器人学与机器视觉知识有机结合,给出了实例算法和程序。作者有完备的代码可下载,用于验证书中知识点和实例,注重如何利用视觉信息控制机器人的运动。
第1章 绪言
1.1 关于本书
1.1.1 MATLAB软件
1.1.2 读者对象及知识
1.1.3 符号与约定
1.1.4 怎样使用本书
1.1.5 使用本书教学
1.1.6 本书梗概
部分 基 础 知 识
第2章 位置与姿态描述
2.1 二维空间位姿描述
2.2 三维空间位姿描述
2.2.1 三维空间姿态描述
2.2.2 平移与旋转组合
2.3 本章总结
延伸阅读
习题
第3章 时间与运动
3.1 轨迹
3.1.1 平滑一维轨迹
3.1.2 多维的情况
3.1.3 多段轨迹
3.1.4 三维空间姿态插值
3.1.5 笛卡儿运动
3.2 时变坐标系
3.2.1 旋转坐标系
3.2.2 增量运动
3.2.3 惯性导航系统
3.3 本章总结
延伸阅读
习题
第二部分 移动机器人
第4章 移动机器人载体
4.1 机动性
4.2 移动机器人小车
4.2.1 移动到一个点
4.2.2 跟踪一条直线
4.2.3 跟踪一般路径
4.2.4 运动到一个位姿
4.3 飞行机器人
4.4 本章总结
扩展阅读
习题
第5章 机器人导航
5.1 反应式导航
5.1.1 Braitenberg车
5.1.2 简单自动机
5.2 基于地图的路径规划
5.2.1 距离变换
5.2.2 D*
5.2.3 沃罗诺伊路线图法
5.2.4 概率路线图方法
5.2.5 RRT
5.3 本章总结
扩展阅读
习题
第6章 机器人定位
6.1 航迹推算
6.1.1 机器人建模
6.1.2 位姿估计
6.2 使用地图
6.3 创建地图
6.4 定位并制图
6.5 蒙特卡罗定位
6.6 本章总结
扩展阅读
习题
第三部分 臂型机器人
第7章 机械臂运动学
7.1 描述一台机械臂
7.2 正运动学
7.2.1 两连杆机器人
7.2.2 六轴机器人
7.3 逆运动学
7.3.1 封闭形式解
7.3.2 数值解
7.3.3 欠驱动机械臂
7.3.4 冗余机械臂
7.4 轨迹
7.4.1 关节空间运动
7.4.2 笛卡儿运动
7.4.3 通过奇异位形的运动
7.4.4 位形转换
7.5 高级问题
7.5.1 关节角偏移
7.5.2 确定D-H参数
7.5.3 改进D-H参数
7.6 应用: 绘图
7.7 应用: 一个简单的步行机器人
7.7.1 运动学
7.7.2 单腿运动
7.7.3 四腿运动
7.8 本章总结
扩展阅读
习题
第8章 速度关系
8.1 机械手的雅可比矩阵
8.1.1 坐标系之间的速度转换
8.1.2 末端执行器坐标系的雅可比矩阵
8.1.3 解析雅可比矩阵
8.1.4 雅可比条件及可操纵性
8.2 分解速率运动控制
8.2.1 雅可比矩阵的奇异性
8.2.2 欠驱动机器人的雅可比矩阵
8.2.3 过驱动机器人的雅可比矩阵
8.3 力的关系
8.3.1 坐标系间的力旋量转换
8.3.2 力旋量转换至关节空间
8.4 逆运动学: 一个通用数值方法
8.5 本章总结
扩展阅读
习题
第9章 动力学与控制
9.1 运动方程
9.1.1 重力
9.1.2 惯量矩阵
9.1.3 科氏矩阵
9.1.4 有效载荷的影响
9.1.5 基座力
9.1.6 动态可操作性
9.2 传动系统
9.2.1 摩擦
9.3 正向动力学
9.4 机械臂关节控制
9.4.1 驱动器
9.4.2 独立关节控制
9.4.3 刚体动力学补偿
9.4.4 柔性传动
9.5 本章总结
扩展阅读
习题
第四部分 计算机视觉
第10章 光与色彩
10.1 光的谱表示
10.1.1 吸收
10.1.2 反射
10.2 色彩
10.2.1 颜色再造
10.2.2 色度空间
10.2.3 色彩名称
10.2.4 其他颜色空间
10.2.5 两种原色之间的转换
10.2.6 什么是白色
10.3 高级议题
10.3.1 颜色的不变性
10.3.2 白平衡
10.3.3 由于吸收的颜色变化
10.3.4 伽玛
10.3.5 应用: 彩色图像
10.4 本章总结
扩展阅读
习题
第11章 图像形成
11.1 透视变换
11.1.1 透镜畸变
11.2 相机标定
11.2.1 齐次变换法
11.2.2 分解相机标定矩阵
11.2.3 位姿估计
11.2.4 相机标定工具箱
11.3 非透视成像模型
11.3.1 鱼眼镜头相机
11.3.2 反射折射相机
11.3.3 球形相机
11.4 统一化成像
11.4.1 映射广角图像到球面上
11.4.2 合成透视图像
11.5 本章总结
扩展阅读
习题
第12章 图像处理
12.1 获取图像
12.1.1 来自文件的图像
12.1.2 来自附带相机的图像
12.1.3 来自电影文件的图像
12.1.4 来自网络的图像
12.1.5 来自代码的图像
12.2 一元操作
12.3 二元操作
12.4 空间操作
12.4.1 互相关
12.4.2 模板匹配
12.4.3 非线性操作
12.5 数学形态学
12.5.1 去除噪声
12.5.2 边界检测
12.5.3 形态交离变换
12.6 形状变化
12.6.1 裁剪
12.6.2 图像缩放
12.6.3 图像金字塔
12.6.4 图像变形
12.7 本章总结
扩展阅读
习题
第13章 图像特征提取
13.1 区域特征
13.1.1 分类
13.1.2 图像表示
13.1.3 图像描述
13.1.4 简要回顾
13.2 直线特征
13.3 点特征
13.3.1 经典角点检测器
13.3.2 尺度空间角点检测器
13.4 本章总结
扩展阅读
习题
第14章 使用多幅图像
14.1 特征匹配
14.2 多视图几何学
14.2.1 基本矩阵
14.2.2 本质矩阵
14.2.3 估计基本矩阵
14.2.4 平面单应性
14.3 立体视觉
14.3.1 稀疏立体匹配
14.3.2 密集立体匹配
14.3.3 峰值细化
14.3.4 清理和重构
14.3.5 三维纹理映射显示
14.3.6 补色立体图
14.3.7 图像矫正
14.3.8 平面拟合
14.3.9 3D点集匹配
14.4 结构和运动
14.5 应用: 透视矫正
14.6 应用: 拼接
14.7 应用: 图像匹配和检索
14.8 应用: 图像序列处理
14.9 本章总结
扩展阅读
习题
第五部分 机器人学、 视觉与控制
第15章 基于视觉的控制
15.1 基于位置的视觉伺服
15.2 基于图像的视觉伺服
15.2.1 相机和图像运动
15.2.2 控制特征运动
15.2.3 深度
15.2.4 控制性能分析
15.3 使用其他图像特征
15.3.1 直线特征
15.3.2 圆特征
15.4 本章总结
扩展阅读
习题
第16章 高级视觉伺服
16.1 XY/Z分割的IBVS
16.2 使用极坐标的IBVS
16.3 对一个球面相机的IBVS
16.4 应用: 机械臂机器人
16.5 应用: 移动机器人
16.5.1 完整约束移动机器人
16.5.2 非完整约束移动机器人
16.6 应用: 飞行机器人
16.7 本章总结
扩展阅读
习题
附 录
附录A 安装工具箱
附录B Simulink软件
附录C MATLAB对象
附录D 线性代数复习
附录E 椭圆
附录F 高斯随机变量
附录G 雅克比矩阵
附录H 卡尔曼滤波
附录I 齐次坐标系
附录J 图
附录K 峰值搜索
术语
参考文献
^ 收 起
1.1 关于本书
1.1.1 MATLAB软件
1.1.2 读者对象及知识
1.1.3 符号与约定
1.1.4 怎样使用本书
1.1.5 使用本书教学
1.1.6 本书梗概
部分 基 础 知 识
第2章 位置与姿态描述
2.1 二维空间位姿描述
2.2 三维空间位姿描述
2.2.1 三维空间姿态描述
2.2.2 平移与旋转组合
2.3 本章总结
延伸阅读
习题
第3章 时间与运动
3.1 轨迹
3.1.1 平滑一维轨迹
3.1.2 多维的情况
3.1.3 多段轨迹
3.1.4 三维空间姿态插值
3.1.5 笛卡儿运动
3.2 时变坐标系
3.2.1 旋转坐标系
3.2.2 增量运动
3.2.3 惯性导航系统
3.3 本章总结
延伸阅读
习题
第二部分 移动机器人
第4章 移动机器人载体
4.1 机动性
4.2 移动机器人小车
4.2.1 移动到一个点
4.2.2 跟踪一条直线
4.2.3 跟踪一般路径
4.2.4 运动到一个位姿
4.3 飞行机器人
4.4 本章总结
扩展阅读
习题
第5章 机器人导航
5.1 反应式导航
5.1.1 Braitenberg车
5.1.2 简单自动机
5.2 基于地图的路径规划
5.2.1 距离变换
5.2.2 D*
5.2.3 沃罗诺伊路线图法
5.2.4 概率路线图方法
5.2.5 RRT
5.3 本章总结
扩展阅读
习题
第6章 机器人定位
6.1 航迹推算
6.1.1 机器人建模
6.1.2 位姿估计
6.2 使用地图
6.3 创建地图
6.4 定位并制图
6.5 蒙特卡罗定位
6.6 本章总结
扩展阅读
习题
第三部分 臂型机器人
第7章 机械臂运动学
7.1 描述一台机械臂
7.2 正运动学
7.2.1 两连杆机器人
7.2.2 六轴机器人
7.3 逆运动学
7.3.1 封闭形式解
7.3.2 数值解
7.3.3 欠驱动机械臂
7.3.4 冗余机械臂
7.4 轨迹
7.4.1 关节空间运动
7.4.2 笛卡儿运动
7.4.3 通过奇异位形的运动
7.4.4 位形转换
7.5 高级问题
7.5.1 关节角偏移
7.5.2 确定D-H参数
7.5.3 改进D-H参数
7.6 应用: 绘图
7.7 应用: 一个简单的步行机器人
7.7.1 运动学
7.7.2 单腿运动
7.7.3 四腿运动
7.8 本章总结
扩展阅读
习题
第8章 速度关系
8.1 机械手的雅可比矩阵
8.1.1 坐标系之间的速度转换
8.1.2 末端执行器坐标系的雅可比矩阵
8.1.3 解析雅可比矩阵
8.1.4 雅可比条件及可操纵性
8.2 分解速率运动控制
8.2.1 雅可比矩阵的奇异性
8.2.2 欠驱动机器人的雅可比矩阵
8.2.3 过驱动机器人的雅可比矩阵
8.3 力的关系
8.3.1 坐标系间的力旋量转换
8.3.2 力旋量转换至关节空间
8.4 逆运动学: 一个通用数值方法
8.5 本章总结
扩展阅读
习题
第9章 动力学与控制
9.1 运动方程
9.1.1 重力
9.1.2 惯量矩阵
9.1.3 科氏矩阵
9.1.4 有效载荷的影响
9.1.5 基座力
9.1.6 动态可操作性
9.2 传动系统
9.2.1 摩擦
9.3 正向动力学
9.4 机械臂关节控制
9.4.1 驱动器
9.4.2 独立关节控制
9.4.3 刚体动力学补偿
9.4.4 柔性传动
9.5 本章总结
扩展阅读
习题
第四部分 计算机视觉
第10章 光与色彩
10.1 光的谱表示
10.1.1 吸收
10.1.2 反射
10.2 色彩
10.2.1 颜色再造
10.2.2 色度空间
10.2.3 色彩名称
10.2.4 其他颜色空间
10.2.5 两种原色之间的转换
10.2.6 什么是白色
10.3 高级议题
10.3.1 颜色的不变性
10.3.2 白平衡
10.3.3 由于吸收的颜色变化
10.3.4 伽玛
10.3.5 应用: 彩色图像
10.4 本章总结
扩展阅读
习题
第11章 图像形成
11.1 透视变换
11.1.1 透镜畸变
11.2 相机标定
11.2.1 齐次变换法
11.2.2 分解相机标定矩阵
11.2.3 位姿估计
11.2.4 相机标定工具箱
11.3 非透视成像模型
11.3.1 鱼眼镜头相机
11.3.2 反射折射相机
11.3.3 球形相机
11.4 统一化成像
11.4.1 映射广角图像到球面上
11.4.2 合成透视图像
11.5 本章总结
扩展阅读
习题
第12章 图像处理
12.1 获取图像
12.1.1 来自文件的图像
12.1.2 来自附带相机的图像
12.1.3 来自电影文件的图像
12.1.4 来自网络的图像
12.1.5 来自代码的图像
12.2 一元操作
12.3 二元操作
12.4 空间操作
12.4.1 互相关
12.4.2 模板匹配
12.4.3 非线性操作
12.5 数学形态学
12.5.1 去除噪声
12.5.2 边界检测
12.5.3 形态交离变换
12.6 形状变化
12.6.1 裁剪
12.6.2 图像缩放
12.6.3 图像金字塔
12.6.4 图像变形
12.7 本章总结
扩展阅读
习题
第13章 图像特征提取
13.1 区域特征
13.1.1 分类
13.1.2 图像表示
13.1.3 图像描述
13.1.4 简要回顾
13.2 直线特征
13.3 点特征
13.3.1 经典角点检测器
13.3.2 尺度空间角点检测器
13.4 本章总结
扩展阅读
习题
第14章 使用多幅图像
14.1 特征匹配
14.2 多视图几何学
14.2.1 基本矩阵
14.2.2 本质矩阵
14.2.3 估计基本矩阵
14.2.4 平面单应性
14.3 立体视觉
14.3.1 稀疏立体匹配
14.3.2 密集立体匹配
14.3.3 峰值细化
14.3.4 清理和重构
14.3.5 三维纹理映射显示
14.3.6 补色立体图
14.3.7 图像矫正
14.3.8 平面拟合
14.3.9 3D点集匹配
14.4 结构和运动
14.5 应用: 透视矫正
14.6 应用: 拼接
14.7 应用: 图像匹配和检索
14.8 应用: 图像序列处理
14.9 本章总结
扩展阅读
习题
第五部分 机器人学、 视觉与控制
第15章 基于视觉的控制
15.1 基于位置的视觉伺服
15.2 基于图像的视觉伺服
15.2.1 相机和图像运动
15.2.2 控制特征运动
15.2.3 深度
15.2.4 控制性能分析
15.3 使用其他图像特征
15.3.1 直线特征
15.3.2 圆特征
15.4 本章总结
扩展阅读
习题
第16章 高级视觉伺服
16.1 XY/Z分割的IBVS
16.2 使用极坐标的IBVS
16.3 对一个球面相机的IBVS
16.4 应用: 机械臂机器人
16.5 应用: 移动机器人
16.5.1 完整约束移动机器人
16.5.2 非完整约束移动机器人
16.6 应用: 飞行机器人
16.7 本章总结
扩展阅读
习题
附 录
附录A 安装工具箱
附录B Simulink软件
附录C MATLAB对象
附录D 线性代数复习
附录E 椭圆
附录F 高斯随机变量
附录G 雅克比矩阵
附录H 卡尔曼滤波
附录I 齐次坐标系
附录J 图
附录K 峰值搜索
术语
参考文献
^ 收 起
本书是关于机器人学和机器视觉的实用参考书, 部分“基础知识”(第2章和第3章)介绍机器人及其操作对象的位置和姿态描述,以及机器人路径和运动的表示方法;第二部分“移动机器人”(第4章至第6章)介绍其基本运动控制模式及其导航和定位方法;第三部分“臂型机器人”(第7章至第9章)介绍其运动学、动力学和控制方面的知识;第四部分“计算机视觉”(第10章至第14章)包括光照与色彩,图像形成和处理技术,图像特征提取,以及基于多幅图像的立体视觉技术;第五部分“机器人学、 视学与控制”(第15章和第16章)分别讨论基于位置和基于图像的视觉伺服及更先进的混合视觉伺服方法。本书将机器人学与机器视觉知识有机结合,给出了实例算法和程序。作者有完备的代码可下载,用于验证书中知识点和实例,注重如何利用视觉信息控制机器人的运动。
比价列表
1人想要
公众号、微信群
缺书网
微信公众号
微信公众号
扫码进群
实时获取购书优惠
实时获取购书优惠