Preface to second edition
Preface to first edition
1. Introduction
1.1. Partial differential equations
1.2. Examples
1.2.1. Single partial differential equations
1.2.2. Systems of partial differential equations
1.3. Strategies for studying PDE
1.3.1. Well-posed problems, classical solutions
1.3.2. Weak solutions and regularity
1.3.3. Typical difficulties
1.4. Overview
1.5. Problems
1.6. References
PART I: REPRESENTATION FORMULAS FOR SOLUTIONS
2. Four Important Linear PDE
2.1. Transport equation
2.1.1. Initial-value problem
2.1.2. Nonhomogeneous problem
2.2. Laplace's equation
2.2.1. Fundamental solution
2.2.2. Mean-value formulas
2.2.3. Properties of harmonic functions
2.2.4. Green's function
2.2.5. Energy methods
2.3. Heat equation
2.3.1. Fundamental solution
2.3.2. Mean-value formula
2.3.3. Properties of solutions
2.3.4. Energy methods
2.4. Wave equation
2.4.1. Solution by spherical means
2.4.2. Nonhomogeneous problem
2.4.3. Energy methods
2.5. Problems .
2.6. References
3. Nonlinear First-Order PDE
3.1. Complete integrals, envelopes
3.1.1. Complete integrals
3.1.2. New solutions from envelopes
3.2. Characteristics
3.2.1. Derivation of characteristic ODE
3.2.2. Examples
3.2.3. Boundary conditions
3.2.4. Local solution
3.2.5. Applications
3.3. Introduction to Hamilton-Jacobi equations
3.3.1. Calculus of variations, Hamilton's ODE
3.3.2. Legendre transform, Hopf-Lax formula
3.3.3. Weak solutions, uniqueness
3.4. Introduction to conservation laws
3.4.1. Shocks, entropy condition
3.4.2. Lax-Oleinik formula
3.4.3. Weak solutions, uniqueness
……
PART Ⅱ: THEORY FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS
PART Ⅲ: THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
APPENDICES
Bibliography
Index