前言
第1 章 绪论 1
1. 1 人工神经网络概述 1
1. 1. 1 人脑与计算机信息处理能力的
比较 2
1. 1. 2 人脑与计算机信息处理机制的
比较 3
1. 1. 3 什么是人工神经网络 4
1. 2 人工神经网络发展简史 5
1. 2. 1 启蒙时期 5
1. 2. 2 低潮时期 7
1. 2. 3 复兴时期 8
1. 2. 4 新时期 9
1. 2. 5 海量数据时代 12
1. 2. 6 国内研究概况 12
1. 3 神经网络的基本特征与功能 13
1. 3. 1 神经网络的基本特点 13
1. 3. 2 神经网络的基本功能 13
1. 4 神经网络的应用领域 15
1. 4 1 信息处理领域 15
1. 4. 2 自动化领域 16
1. 4. 3 工程领域 16
1. 4. 4 医学领域 17
1. 4. 5 经济领域 17
本章小结 18
习题 19
第2 章 人工神经网络建模基础 20
2. 1 脑的生物神经系统概述 20
2. 1. 1 人体神经系统的构成 20
2. 1. 2 高级中枢神经系统的功能 21
2. 1. 3 脑组织的分层结构 22
2. 2 生物神经网络基础 23
2. 2. 1 生物神经元的结构 23
2. 2. 2 生物神经元的信息处理机理 24
2. 3 人工神经元模型 26
2. 3. 1 神经元的建模 26
2. 3. 2 神经元的数学模型 27
2. 3. 3 神经元的变换函数 28
2. 4 人工神经网络模型 30
2. 4. 1 网络拓扑结构类型 30
2. 4. 2 网络信息流向类型 31
2. 5 神经网络学习 32
2. 5. 1 Hebbian 学习规则 34
2. 5. 2 离散感知器学习规则 35
2. 5. 3 连续感知器学习规则 36
2. 5. 4 最小方均学习规则 37
2. 5. 5 相关学习规则 38
2. 5. 6 胜者为王学习规则 38
2. 5. 7 外星学习规则 38
本章小结 40
习题 40
第3 章 感知器神经网络 42
3. 1 单层感知器 42
3. 1. 1 感知器模型 42
3. 1. 2 感知器的功能 43
3. 1. 3 感知器的局限性 45
3. 1. 4 感知器的学习算法 45
3. 2 多层感知器 47
3. 3 自适应线性单元简介 49
3. 3. 1 ADALINE 模型 49
3. 3. 2 ADALINE 学习算法 49
3. 3. 3 ADALINE 应用 51
3. 4 误差反传算法 51
Ⅵ
3. 4. 1 基于BP 算法的多层感知器
模型 52
3. 4. 2 BP 学习算法 53
3. 4. 3 BP 算法的程序实现 56
3. 4. 4 多层感知器的主要能力 57
3. 4. 5 误差曲面与BP 算法的局限性 58
3. 5 标准BP 算法的改进 59
3. 5. 1 增加动量项 59
3. 5. 2 自适应调节学习率 59
3. 5. 3 引入陡度因子 60
3. 6 基于BP 算法的多层感知器设计
基础 60
3. 6. 1 网络信息容量与训练样本数 60
3. 6. 2 训练样本集的准备 61
3. 6. 3 初始权值的设计 64
3. 6. 4 多层感知器结构设计 65
3. 6. 5 网络训练与测试 66
3. 7 基于BP 算法的多层感知器应用与设计
实例 67
3. 7. 1 基于BP 算法的多层感知器用于
催化剂配方建模 67
3. 7. 2 基于BP 算法的多层感知器用于
汽车变速器最佳挡位判定 68
3. 7. 3 基于BP 算法的多层感知器用于
图像压缩编码 69
3. 7. 4 基于BP 算法的多层感知器用于
水库优化调度 69
3. 8 基于MATLAB 的BP 网络应用实例 70
3. 8. 1 BP 网络用于数据拟合 70
3. 8. 2 BP 网络用于鸢尾花分类问题 72
扩展资料 76
本章小结 77
习题 77
第4 章 自组织竞争神经网络 80
4. 1 竞争学习的概念与原理 80
4. 1. 1 基本概念 80
4. 1. 2 竞争学习原理 82
4. 2 自组织特征映射神经网络 84
4. 2. 1 SOFM 网的生物学基础 85
4. 2. 2 SOFM 网的拓扑结构与权值
调整域 85
4. 2. 3 自组织特征映射网的运行原理与
学习算法 86
4. 2. 4 SOFM 网的设计基础 90
4. 2. 5 应用与设计实例 92
4. 3 学习向量量化神经网络 95
4. 3. 1 向量量化 95
4. 3. 2 LVQ 网络结构与工作原理 96
4. 3. 3 LVQ 网络的学习算法 97
4. 4 对偶传播神经网络 98
4. 4. 1 网络结构与运行原理 98
4. 4. 2 CPN 的学习算法 99
4. 4. 3 改进的CPN 网 100
^ 收 起