前言
第1部分 对量化交易的正确认识
第1章 量化引言 2
1.1 什么是量化交易 2
1.2 量化交易:投资?投机?赌博? 3
1.3 量化交易的优势 4
1.4 量化交易的正确认识 8
1.5 量化交易的目的 11
第2部分 量化交易的基础
第2章 量化语言——Python 14
2.1 基础语法与数据结构 15
2.2 函数 20
2.3 面向对象 25
2.4 性能效率 38
2.5 代码调试 45
2.6 本章小结 48
第3章 量化工具——NumPy 49
3.1 并行化思想与基础操作 49
3.2 基础统计概念与函数使用 57
3.3 正态分布 62
3.4 伯努利分布 66
3.5 本章小结 71
第4章 量化工具——pandas 72
4.1 基本操作方法 72
4.2 基本数据分析示例 78
4.3 实例1:寻找股票异动涨跌幅阀值 87
4.4 实例2:星期几是这个股票的“好日子” 91
4.5 实例3:跳空缺口 95
4.6 pandas三维面板的使用 98
4.7 本章小结 101
第5章 量化工具——可视化 102
5.1 使用Matplotlib可视化数据 102
5.2 使用Bokeh交互可视化 106
5.3 使用pandas可视化数据 107
5.4 使用Seaborn可视化数据 112
5.5 实例1:可视化量化策略的交易区间及卖出原因 115
5.6 实例2:标准化两个股票的观察周期 120
5.7 实例3:黄金分割线 124
5.8 技术指标的可视化 130
5.9 本章小结 133
第6章 量化工具——数学 134
6.1 回归与插值 134
6.2 蒙特卡罗方法与凸优化 139
6.3 线性代数 159
6.4 本章小结 168
第3部分 量化交易系统的开发
第7章 量化系统——入门 170
7.1 趋势跟踪与均值回复 170
7.2 仓位控制管理 188
7.3 本章小结 202
第8章 量化系统——开发 203
8.1 abu量化系统择时 204
8.2 abu量化系统选股 234
8.3 本章小结 242
第9章 量化系统——度量与优化 243
9.1 度量的基本使用方法 243
9.2 度量的基础 247
9.3 基于Grid Search寻找因子最优参数 253
9.4 资金限制对度量的影响 266
9.5 输入中文自动生成交易策略 272
9.6 本章小结 276
第4部分 机器学习在量化交易中的实战
第10章 量化系统——机器学习•猪老三 278
10.1 机器学习基础概念 278
10.2 猪老三世界中的量化环境 282
10.3 有监督机器学习 286
10.4 无监督机器学习 299
10.5 梦醒时分 303
10.6 本章小结 317
第11章 量化系统——机器学习•abu 318
11.1 搜索引擎与量化交易 319
11.2 主裁 321
11.3 边裁 351
11.4 一定要赢得这场胜利,即使一切都不存在 360
11.5 本章小结 361
附录A 量化环境部署 362
附录B 量化相关性分析 381
附录C 量化统计分析及指标应用 388
^ 收 起