上篇
第1章 机器学习的HELLO WORLD 2
1.1 机器学习简介 2
1.2 机器学习应用的核心开发流程 3
1.3 从代码开始 6
1.3.1 搭建环境 6
1.3.2 一段简单的代码 7
1.4 本章小结 9
1.5 本章参考文献 9
第2章 手工实现神经网络 10
2.1 感知器 10
2.1.1 从神经元到感知器 10
2.1.2 实现简单的感知器 12
2.2 线性回归、梯度下降及实现 15
2.2.1 分类的原理 15
2.2.2 损失函数与梯度下降 16
2.2.3 神经元的线性回归实现 18
2.3 随机梯度下降及实现 21
2.4 单层神经网络的Python实现 23
2.4.1 从神经元到神经网络 23
2.4.2 单层神经网络:初始化 25
2.4.3 单层神经网络:核心概念 27
2.4.4 单层神经网络:前向传播 28
2.4.5 单层神经网络:反向传播 29
2.4.6 网络训练及调整 34
2.5 本章小结 38
2.6 本章参考文献 38
第3章 上手KERAS 39
3.1 Keras简介 39
3.2 Keras开发入门 40
3.2.1 构建模型 40
3.2.2 训练与测试 42
3.3 Keras的概念说明 44
3.3.1 Model 44
3.3.2 Layer 48
3.3.3 Loss 65
3.4 再次代码实战 70
3.4.1 XOR运算 70
3.4.2 房屋价格预测 73
3.5 本章小结 75
3.6 本章参考文献 76
第4章 预测与分类:简单的机器学习应用 77
4.1 机器学习框架之sklearn简介 77
4.1.1 安装sklearn 78
4.1.2 sklearn中的常用模块 78
4.1.3 对算法和模型的选择 79
4.1.4 对数据集的划分 80
4.2 初识分类算法 80
4.2.1 分类算法的性能度量指标 81
4.2.2 朴素贝叶斯分类及案例实现 86
4.3 决策树 90
4.3.1 算法介绍 90
4.3.2 决策树的原理 91
4.3.3 实例演练 96
4.3.4 决策树优化 99
4.4 线性回归 101
4.4.1 算法介绍 101
4.4.2 实例演练 101
4.5 逻辑回归 102
4.5.1 算法介绍 102
4.5.2 多分类问题与实例演练 107
4.6 神经网络 108
4.6.1 神经网络的历史 108
4.6.2 实例演练 114
4.6.3 深度学习中的一些算法细节 117
4.7 本章小结 120
4.8 本章参考文献 120
下篇
第5章 推荐系统基础 122
5.1 推荐系统简介 122
5.2 相似度计算 124
5.3 协同过滤 125
5.3.1 基于用户的协同过滤 126
5.3.2 基于物品的协同过滤 128
5.3.3 算法实现与案例演练 129
5.4 LR模型在推荐场景下的应用 131
5.5 多模型融合推荐模型:Wide&Deep模型 135
5.5.1 探索-利用困境的问题 135
5.5.2 Wide&Deep模型 137
5.5.3 交叉特征 137
5.6 本章小结 145
5.7 本章参考文献 145
第6章 项目实战:聊天机器人 146
6.1 聊天机器人的发展历史 146
6.2 循环神经网络 148
6.2.1 Slot Filling 148
6.2.2 NLP中的单词处理 150
6.2.3 循环神经网络简介 153
6.2.4 LSTM网络简介 154
6.3 Seq2Seq原理介绍及实现 157
6.3.1 Seq2Seq原理介绍 157
6.3.2 用Keras实现Seq2Seq算法 158
6.4 Attention 173
6.4.1 Seq2Seq的问题 174
6.4.2 Attention的工作原理 175
6.4.3 Attention在Keras中的实现 178
6.4.4 Attention示例 180
6.5 本章小结 185
6.6 本章参考文献 185
第7章 图像分类实战 187
7.1 图像分类与卷积神经网络 187
7.1.1 卷积神经网络的历史 187
7.1.2 图像分类的3个问题 188
7.2 卷积神经网络的工作原理 190
7.2.1 卷积运算 191
7.2.2 传统图像处理中的卷积运算 193
7.2.3 Pooling 195
7.2.4 为什么卷积神经网络能达到较好的效果 197
7.3 案例实战:交通图标分类 200
7.3.1 交通图标数据集 200
7.3.2 卷积神经网络的Keras实现 202
7.4 优化策略 209
7.4.1 数据增强 210
7.4.2 ResNet 214
7.5 本章小结 216
7.6 本章参考文献 217
第8章 目标识别 218
8.1 CNN的演化 218
8.1.1 CNN和滑动窗口 218
8.1.2 RCNN 220
8.1.3 从Fast RCNN到Faster RCNN 223
8.1.4 Faster RCNN核心代码解析 228
8.2 YOLO 242
8.2.1 YOLO v1 242
8.2.2 YOLO v2 248
8.2.3 YOLO v3 251
8.3 YOLO v3的具体实现 253
8.3.1 数据预处理 253
8.3.2 模型训练 260
8.4 本章小结 293
8.5 本章参考文献 294
第9章 模型部署与服务 296
9.1 生产环境中的模型服务 296
9.2 TensorFlow Serving的应用 299
9.2.1 转换Keras模型 299
9.2.2 TensorFlow Serving部署 302
9.2.3 接口验证 303
9.3 本章小结 307
9.4 本章参考文献 308
^ 收 起