图像视频滤镜与人像美颜美妆算法详解
目录
第1章 图像基础 1
1.1 Photoshop功能模块介绍 1
1.1.1 颜色模式 2
1.1.2 RGB颜色模式基础调节 3
1.2 图像颜色空间 9
1.2.1 RGB颜色空间 9
1.2.2 HSV颜色空间 19
1.2.3 YUV颜色空间 24
1.2.4 CIELab颜色空间 27
查看完整
第1章 图像基础 1
1.1 Photoshop功能模块介绍 1
1.1.1 颜色模式 2
1.1.2 RGB颜色模式基础调节 3
1.2 图像颜色空间 9
1.2.1 RGB颜色空间 9
1.2.2 HSV颜色空间 19
1.2.3 YUV颜色空间 24
1.2.4 CIELab颜色空间 27
查看完整
胡耀武,CSDN博客专家,2012年硕士毕业于浙江理工大学信号与信息系统专业。先后供职于杭州虹软科技有限公司、杭州九言科技有限公司、杭州趣维科技有限公司等上市公司和独角兽互联网公司,现为杭州趣维科技有限公司(小影App)资深视觉图像算法工程师。多年来专注于图像滤镜、人像美颜美妆、动漫手绘等相关图像特效算法的研究,曾负责多款亿级用户量App的图像算法研发工作,拥有数十个算法专利申请,在人像美化特效方面有着深厚的积累和经验。
本书主要介绍了与图像视频滤镜和人像美颜美妆特效相关的算法基础知识与方法思路。从多年前的Photoshop到今天的手机拍照App,以及功能强大的智能图像处理软件的普及程度可以看出,滤镜、美颜和美妆已是照片/视频美化操作不可或缺的部分。本书从传统方法开始,系统地讲述了调色、滤波、变形等图像算法,并以此为基础讲解了各种图像滤镜、人像美颜美妆特效的算法思路与代码实现,*后扩展到基于深度学习的AI滤镜及美颜算法。全书条理清晰,由简到难,通俗易懂。本书非常适合对图像算法,尤其是图像特效、人脸美化感兴趣的初学者,或者想从事相关工作但又缺少经验的人员,抑或是图像美化相关领域的设计师等。
目录
第1章 图像基础 1
1.1 Photoshop功能模块介绍 1
1.1.1 颜色模式 2
1.1.2 RGB颜色模式基础调节 3
1.2 图像颜色空间 9
1.2.1 RGB颜色空间 9
1.2.2 HSV颜色空间 19
1.2.3 YUV颜色空间 24
1.2.4 CIELab颜色空间 27
1.3 图像处理基础算法 33
1.3.1 图像灰度化 33
1.3.2 图像阈值化 36
1.3.3 图像直方图 38
1.3.4 图像的亮度/对比度调整 41
1.3.5 图像的饱和度调整 45
1.4 图像滤波与锐化算法 48
1.4.1 图像均值滤波 49
1.4.2 图像高斯滤波 54
1.4.3 图像拉普拉斯锐化 60
1.4.4 图像USM锐化 63
1.5 图像边缘检测算法 67
1.5.1 Sobel边缘检测 67
1.5.2 经典Canny边缘检测 72
1.6 本章小结 79
参考资料 79
第2章 照片滤镜详解 81
2.1 初识滤镜 81
2.2 颜色滤镜 85
2.2.1 算法颜色滤镜 85
2.2.2 LUT颜色滤镜 89
2.3 几何滤镜 96
2.4 混合滤镜 100
2.5 智能滤镜 102
2.6 “美图秀秀”中的阿宝色滤镜算法与实现 104
2.7 Instagram 1977滤镜算法与实现 113
2.8 本章小结 118
参考资料 119
第3章 人像美颜算法详解 120
3.1 图像保边滤波算法 120
3.1.1 双边滤波算法 121
3.1.2 Surface Blur滤波算法 128
3.1.3 Guided滤波算法 133
3.1.4 局部均值滤波算法 140
3.1.5 Anisotropic滤波算法 147
3.1.6 Smart Blur滤波算法 153
3.1.7 MeanShift滤波算法 158
3.1.8 BEEPS滤波算法 165
3.1.9 其他滤波算法 173
3.2 人像皮肤检测算法 174
3.2.1 基于颜色空间的皮肤检测算法 175
3.2.2 基于高斯模型的肤色概率计算方法 182
3.2.3 皮肤检测在磨皮中的应用 185
3.3 人像美肤算法 188
3.3.1 皮肤美白算法 189
3.3.2 皮肤调色算法 196
3.4 人像磨皮算法 199
3.4.1 通用磨皮算法 200
3.4.2 通道磨皮算法 203
3.4.3 高反差磨皮算法 208
3.4.4 细节叠加磨皮算法 214
3.4.5 其他磨皮算法 217
3.5 人像美颜算法与实战 219
3.5.1 “美颜相机”中的效果分析 219
3.5.2 “美颜相机”中的效果实现 222
3.6 本章小结 233
参考资料 233
第4章 人像变形特效算法详解 236
4.1 基础图像变形算法 236
4.1.1 图像仿射变换 237
4.1.2 图像透视变换 242
4.1.3 图像反距离加权(IDW)插值变形算法 246
4.1.4 图像特征线变形算法 250
4.1.5 图像MLS变形算法 258
4.1.6 图像三角剖分变形算法 273
4.2 人像美颜变形算法 274
4.2.1 人像美颜瘦脸算法之手动瘦脸 275
4.2.2 人像美颜瘦脸算法之自动瘦脸 279
4.2.3 人像美颜大眼算法 286
4.2.4 其他脸部变形算法 291
4.3 本章小结 293
参考资料 293
第5章 人像美妆算法详解 294
5.1 美妆算法简介 294
5.2 美妆算法—美瞳 298
5.2.1 美瞳效果的PS实现 298
5.2.2 美瞳效果的算法实现 300
5.3 美妆算法—腮红 307
5.3.1 腮红效果的PS实现 308
5.3.2 腮红效果的算法实现 309
5.4 美妆算法—眼妆 315
5.4.1 眼妆算法—眼影 315
5.4.2 眼妆算法—眼线/睫毛/双眼皮 325
5.5 美妆算法—眉毛 332
5.5.1 美眉效果的PS实现 333
5.5.2 美眉效果的算法实现 334
5.6 美妆算法—立体修鼻 338
5.6.1 立体修鼻效果的PS实现 339
5.6.2 立体修鼻效果的算法实现 340
5.7 美妆算法—唇妆 344
5.7.1 唇彩效果的PS实现 345
5.7.2 唇彩效果的算法实现 347
5.7.3 唇彩的其他算法实现 357
5.8 仿“美妆相机”DEMO实战 361
5.8.1 美妆软件—DLL算法部分 362
5.8.2 美妆软件—UI交互部分 364
5.9 本章小结 381
第6章 AI美颜算法基础 382
6.1 AI美颜发展现状 382
6.2 经典人脸检测网络MTCNN 383
6.2.1 IOU和NMS 383
6.2.2 MTCNN网络剖析 385
6.3 经典图像分割网络U-Net 388
6.4 经典残差网络ResNet 392
6.5 阿里前向推理引擎MNN 397
6.5.1 MNN推理引擎介绍 398
6.5.2 MNN编译与模型转换工具 400
6.5.3 MNN的使用 404
6.5.4 MNN的测试工程 407
6.6 本章小结 409
参考资料 409
第7章 AI美颜算法详解 411
7.1 AI美颜概述 412
7.2 AI美颜之人像分割算法 413
7.3 AI美颜之背景虚化 417
7.4 AI美颜之人像染发 423
7.4.1 头发分割模块 424
7.4.2 头发染色模块 427
7.5 AI美颜之美甲 431
7.5.1 指甲分割模块 433
7.5.2 指甲染色模块 436
7.6 AI美颜之智能磨皮 446
7.6.1 通用AI美颜磨皮框架 446
7.6.2 AI皮肤分割模块 447
7.6.3 美颜模块 450
7.7 AI美颜之人脸检测 455
7.7.1 分析人脸检测算法 455
7.7.2 实现人脸检测算法 456
7.8 AI美颜之人脸关键点检测 466
7.8.1 网络设计 466
7.8.2 数据准备 469
7.8.3 训练与测试 470
7.9 AI美颜之性别识别 471
7.10 其他AI美颜技术探讨 474
7.10.1 AI滤镜 474
7.10.2 AI美妆 477
7.10.3 AI瘦身 478
7.10.4 AI换脸 479
7.10.5 AI颜值评分 481
7.11 本章小结 481
参考资料 482
^ 收 起
第1章 图像基础 1
1.1 Photoshop功能模块介绍 1
1.1.1 颜色模式 2
1.1.2 RGB颜色模式基础调节 3
1.2 图像颜色空间 9
1.2.1 RGB颜色空间 9
1.2.2 HSV颜色空间 19
1.2.3 YUV颜色空间 24
1.2.4 CIELab颜色空间 27
1.3 图像处理基础算法 33
1.3.1 图像灰度化 33
1.3.2 图像阈值化 36
1.3.3 图像直方图 38
1.3.4 图像的亮度/对比度调整 41
1.3.5 图像的饱和度调整 45
1.4 图像滤波与锐化算法 48
1.4.1 图像均值滤波 49
1.4.2 图像高斯滤波 54
1.4.3 图像拉普拉斯锐化 60
1.4.4 图像USM锐化 63
1.5 图像边缘检测算法 67
1.5.1 Sobel边缘检测 67
1.5.2 经典Canny边缘检测 72
1.6 本章小结 79
参考资料 79
第2章 照片滤镜详解 81
2.1 初识滤镜 81
2.2 颜色滤镜 85
2.2.1 算法颜色滤镜 85
2.2.2 LUT颜色滤镜 89
2.3 几何滤镜 96
2.4 混合滤镜 100
2.5 智能滤镜 102
2.6 “美图秀秀”中的阿宝色滤镜算法与实现 104
2.7 Instagram 1977滤镜算法与实现 113
2.8 本章小结 118
参考资料 119
第3章 人像美颜算法详解 120
3.1 图像保边滤波算法 120
3.1.1 双边滤波算法 121
3.1.2 Surface Blur滤波算法 128
3.1.3 Guided滤波算法 133
3.1.4 局部均值滤波算法 140
3.1.5 Anisotropic滤波算法 147
3.1.6 Smart Blur滤波算法 153
3.1.7 MeanShift滤波算法 158
3.1.8 BEEPS滤波算法 165
3.1.9 其他滤波算法 173
3.2 人像皮肤检测算法 174
3.2.1 基于颜色空间的皮肤检测算法 175
3.2.2 基于高斯模型的肤色概率计算方法 182
3.2.3 皮肤检测在磨皮中的应用 185
3.3 人像美肤算法 188
3.3.1 皮肤美白算法 189
3.3.2 皮肤调色算法 196
3.4 人像磨皮算法 199
3.4.1 通用磨皮算法 200
3.4.2 通道磨皮算法 203
3.4.3 高反差磨皮算法 208
3.4.4 细节叠加磨皮算法 214
3.4.5 其他磨皮算法 217
3.5 人像美颜算法与实战 219
3.5.1 “美颜相机”中的效果分析 219
3.5.2 “美颜相机”中的效果实现 222
3.6 本章小结 233
参考资料 233
第4章 人像变形特效算法详解 236
4.1 基础图像变形算法 236
4.1.1 图像仿射变换 237
4.1.2 图像透视变换 242
4.1.3 图像反距离加权(IDW)插值变形算法 246
4.1.4 图像特征线变形算法 250
4.1.5 图像MLS变形算法 258
4.1.6 图像三角剖分变形算法 273
4.2 人像美颜变形算法 274
4.2.1 人像美颜瘦脸算法之手动瘦脸 275
4.2.2 人像美颜瘦脸算法之自动瘦脸 279
4.2.3 人像美颜大眼算法 286
4.2.4 其他脸部变形算法 291
4.3 本章小结 293
参考资料 293
第5章 人像美妆算法详解 294
5.1 美妆算法简介 294
5.2 美妆算法—美瞳 298
5.2.1 美瞳效果的PS实现 298
5.2.2 美瞳效果的算法实现 300
5.3 美妆算法—腮红 307
5.3.1 腮红效果的PS实现 308
5.3.2 腮红效果的算法实现 309
5.4 美妆算法—眼妆 315
5.4.1 眼妆算法—眼影 315
5.4.2 眼妆算法—眼线/睫毛/双眼皮 325
5.5 美妆算法—眉毛 332
5.5.1 美眉效果的PS实现 333
5.5.2 美眉效果的算法实现 334
5.6 美妆算法—立体修鼻 338
5.6.1 立体修鼻效果的PS实现 339
5.6.2 立体修鼻效果的算法实现 340
5.7 美妆算法—唇妆 344
5.7.1 唇彩效果的PS实现 345
5.7.2 唇彩效果的算法实现 347
5.7.3 唇彩的其他算法实现 357
5.8 仿“美妆相机”DEMO实战 361
5.8.1 美妆软件—DLL算法部分 362
5.8.2 美妆软件—UI交互部分 364
5.9 本章小结 381
第6章 AI美颜算法基础 382
6.1 AI美颜发展现状 382
6.2 经典人脸检测网络MTCNN 383
6.2.1 IOU和NMS 383
6.2.2 MTCNN网络剖析 385
6.3 经典图像分割网络U-Net 388
6.4 经典残差网络ResNet 392
6.5 阿里前向推理引擎MNN 397
6.5.1 MNN推理引擎介绍 398
6.5.2 MNN编译与模型转换工具 400
6.5.3 MNN的使用 404
6.5.4 MNN的测试工程 407
6.6 本章小结 409
参考资料 409
第7章 AI美颜算法详解 411
7.1 AI美颜概述 412
7.2 AI美颜之人像分割算法 413
7.3 AI美颜之背景虚化 417
7.4 AI美颜之人像染发 423
7.4.1 头发分割模块 424
7.4.2 头发染色模块 427
7.5 AI美颜之美甲 431
7.5.1 指甲分割模块 433
7.5.2 指甲染色模块 436
7.6 AI美颜之智能磨皮 446
7.6.1 通用AI美颜磨皮框架 446
7.6.2 AI皮肤分割模块 447
7.6.3 美颜模块 450
7.7 AI美颜之人脸检测 455
7.7.1 分析人脸检测算法 455
7.7.2 实现人脸检测算法 456
7.8 AI美颜之人脸关键点检测 466
7.8.1 网络设计 466
7.8.2 数据准备 469
7.8.3 训练与测试 470
7.9 AI美颜之性别识别 471
7.10 其他AI美颜技术探讨 474
7.10.1 AI滤镜 474
7.10.2 AI美妆 477
7.10.3 AI瘦身 478
7.10.4 AI换脸 479
7.10.5 AI颜值评分 481
7.11 本章小结 481
参考资料 482
^ 收 起
胡耀武,CSDN博客专家,2012年硕士毕业于浙江理工大学信号与信息系统专业。先后供职于杭州虹软科技有限公司、杭州九言科技有限公司、杭州趣维科技有限公司等上市公司和独角兽互联网公司,现为杭州趣维科技有限公司(小影App)资深视觉图像算法工程师。多年来专注于图像滤镜、人像美颜美妆、动漫手绘等相关图像特效算法的研究,曾负责多款亿级用户量App的图像算法研发工作,拥有数十个算法专利申请,在人像美化特效方面有着深厚的积累和经验。
本书主要介绍了与图像视频滤镜和人像美颜美妆特效相关的算法基础知识与方法思路。从多年前的Photoshop到今天的手机拍照App,以及功能强大的智能图像处理软件的普及程度可以看出,滤镜、美颜和美妆已是照片/视频美化操作不可或缺的部分。本书从传统方法开始,系统地讲述了调色、滤波、变形等图像算法,并以此为基础讲解了各种图像滤镜、人像美颜美妆特效的算法思路与代码实现,*后扩展到基于深度学习的AI滤镜及美颜算法。全书条理清晰,由简到难,通俗易懂。本书非常适合对图像算法,尤其是图像特效、人脸美化感兴趣的初学者,或者想从事相关工作但又缺少经验的人员,抑或是图像美化相关领域的设计师等。
比价列表