迁移学习
目 录内容简介
推荐序
译者序
前 言
部分 迁移学习的基础
第1章 绪论/2
1.1 人工智能、机器学习以及迁移学习/2
1.2 迁移学习:定义/6
1.3 与已有机器学习范式的关系/9
1.4 迁移学习的基础研究问题/11
1.5 迁移学习应用/11
查看完整
译者序
前 言
部分 迁移学习的基础
第1章 绪论/2
1.1 人工智能、机器学习以及迁移学习/2
1.2 迁移学习:定义/6
1.3 与已有机器学习范式的关系/9
1.4 迁移学习的基础研究问题/11
1.5 迁移学习应用/11
查看完整
目 录内容简介
本书是关于迁移学习的基础、方法、技术和应用的一本书。内容分成两个部分:第壹部分介绍了迁移学习的基础。第二部分涵盖了迁移学习的许多应用领域。迁移学习解决的是学习系统如何快速地适应新场景、新任务和新环境。其研究涉及科学和工程的许多领域,包括人工智能、算法理论、概率和统计等。本书是一本供经验丰富的机器学习研究人员和应用程序开发人员使用的参考书。
目 录内容简介
推荐序
译者序
前 言
部分 迁移学习的基础
第1章 绪论/2
1.1 人工智能、机器学习以及迁移学习/2
1.2 迁移学习:定义/6
1.3 与已有机器学习范式的关系/9
1.4 迁移学习的基础研究问题/11
1.5 迁移学习应用/11
1.5.1 图像理解/11
1.5.2 生物信息学和生物成像/12
1.5.3 推荐系统和协同过滤/12
1.5.4 机器人和汽车自动驾驶/13
1.5.5 自然语言处理和文本挖掘/13
1.6 历史笔记/14
1.7 关于本书/15
第2章 基于样本的迁移学习/19
2.1 引言/19
2.2 基于样本的非归纳式迁移学习/20
2.2.1 判别区分源数据和目标数据/22
2.2.2 核平均匹配/23
2.2.3 函数估计/23
2.3 基于样本的归纳式迁移学习/24
2.3.1 集成源损失与目标损失/24
2.3.2 Boosting风格的方法/26
2.3.3 样本生成方法/27
第3章 基于特征的迁移学习/29
3.1 引言/29
3.2 小化域间差异/30
3.2.1 均值差异/30
3.2.2 基于Bregman散度的正则化/34
3.2.3 使用特定分布假设的度量/34
3.2.4 数据依赖的域差异度量/35
3.3 学习通用特征/36
3.3.1 学习通用编码/36
3.3.2 深度通用特征/37
3.4 特征增强/38
第4章 基于模型的迁移学习/40
4.1 引言/40
4.2 基于共享模型成分的迁移学习/42
4.2.1 利用高斯过程的迁移学习/42
4.2.2 利用贝叶斯模型的知识迁移/43
4.2.3 利用深度模型的模型迁移/44
4.2.4 其他方法/45
4.3 基于正则化的迁移/45
4.3.1 基于支持向量机的正则化/46
4.3.2 基于多核学习的迁移学习/47
4.3.3 深度模型中的微调方法/48
第5章 基于关系的迁移学习/52
5.1 引言/52
5.2 马尔可夫逻辑网络/54
5.3 利用马尔可夫网络的基于关系的迁移学习/55
5.3.1 通过一阶逻辑的浅层迁移/55
5.3.2 通过二阶逻辑的深度迁移/57
5.3.3 通过结构类比的迁移学习/59
第6章 异构迁移学习/61
6.1 引言/61
6.2 异构迁移学习问题/63
6.3 方法/63
6.3.1 异构特征空间/64
6.3.2 异构标签空间/78
6.4 应用/79
第7章 对抗式迁移学习/82
7.1 引言/82
7.2 生成对抗网络/83
7.3 采用对抗式模型的迁移学习/86
7.3.1 生成目标域数据/87
7.3.2 通过对抗式学习来学习域不变特征/89
7.4 讨论/91
第8章 强化学习中的迁移学习/92
8.1 引言/92
8.2 背景/93
8.2.1 强化学习/94
8.2.2 强化学习任务中的迁移学习/95
8.2.3 迁移学习在强化学习中的目标/96
8.2.4 迁移强化学习分类/98
8.3 任务间迁移学习/99
8.3.1 基于样本的迁移/99
8.3.2 基于特征的迁移/100
8.3.3 基于模型的迁移/103
8.3.4 解决“迁移时机”问题/105
8.4 域间迁移学习/105
8.4.1 基于样本的迁移/106
8.4.2 基于特征的迁移/107
8.4.3 基于模型的迁移/108
第9章 多任务学习/109
9.1 引言/109
9.2 定义/111
9.3 多任务监督学习/111
9.3.1 基于特征的多任务监督学习/112
9.3.2 基于模型的多任务监督学习/114
9.3.3 基于样本的多任务监督学习/120
9.4 多任务无监督学习/120
9.5 多任务半监督学习/120
9.6 多任务主动学习/121
9.7 多任务强化学习/121
9.8 多任务在线学习/121
9.9 多任务多视图学习/122
9.10 并行与分布式多任务学习/122
第10章 迁移学习理论/123
10.1 引言/123
10.2 多任务学习的泛化界/124
10.3 监督迁移学习的泛化界/127
10.4 无监督迁移学习的泛化界/129
第11章 传导式迁移学习/131
11.1 引言/131
11.2 混合图上的传导式迁移学习/133
11.2.1 问题定义/134
11.2.2 混合迁移算法/135
11.3 基于隐性特征表示的传导式迁移学习/137
11.3.1 问题定义/137
11.3.2 耦合的矩阵三因子分解算法/138
11.4 基于深度神经网络的传导式迁移学习/141
11.4.1 问题定义/141
11.4.2 选择学习算法/142
第12章 自动迁移学习:学习如何自动迁移/146
12.1 引言/146
12.2 L2T框架/147
12.3 参数化“迁移什么”/148
12.3.1 基于公共隐空间的算法/149
12.3.2 基于流形集成的算法/149
12.4 从经验中学习/149
12.4.1 源域和目标域之间的差异/149
12.4.2 目标域判别能力/151
12.4.3 优化问题/151
12.5 推断“迁移什么”/151
12.6 与其他学习范式的联系/152
12.6.1 迁移学习/152
12.6.2 多任务学习/153
12.6.3 终身机器学习/153
12.6.4 自动化机器学习/153
第13章 小样本学习/155
13.1 引言/155
13.2 零样本学习/156
13.2.1 概述/156
13.2.2 零样本学习算法/157
13.3 单样本学习/161
13.3.1 概述/161
13.3.2 单样本学习算法/161
13.4 贝叶斯规划学习/163
13.4.1 概述/163
13.4.2 用于识别字符笔画的贝叶斯规划学习/163
13.5 短缺资源学习/166
13.5.1 概述/166
13.5.2 机器翻译/166
13.6 域泛化/168
13.6.1 概述/168
13.6.2 偏差SVM/169
13.6.3 多任务自动编码器/169
第14
^ 收 起
译者序
前 言
部分 迁移学习的基础
第1章 绪论/2
1.1 人工智能、机器学习以及迁移学习/2
1.2 迁移学习:定义/6
1.3 与已有机器学习范式的关系/9
1.4 迁移学习的基础研究问题/11
1.5 迁移学习应用/11
1.5.1 图像理解/11
1.5.2 生物信息学和生物成像/12
1.5.3 推荐系统和协同过滤/12
1.5.4 机器人和汽车自动驾驶/13
1.5.5 自然语言处理和文本挖掘/13
1.6 历史笔记/14
1.7 关于本书/15
第2章 基于样本的迁移学习/19
2.1 引言/19
2.2 基于样本的非归纳式迁移学习/20
2.2.1 判别区分源数据和目标数据/22
2.2.2 核平均匹配/23
2.2.3 函数估计/23
2.3 基于样本的归纳式迁移学习/24
2.3.1 集成源损失与目标损失/24
2.3.2 Boosting风格的方法/26
2.3.3 样本生成方法/27
第3章 基于特征的迁移学习/29
3.1 引言/29
3.2 小化域间差异/30
3.2.1 均值差异/30
3.2.2 基于Bregman散度的正则化/34
3.2.3 使用特定分布假设的度量/34
3.2.4 数据依赖的域差异度量/35
3.3 学习通用特征/36
3.3.1 学习通用编码/36
3.3.2 深度通用特征/37
3.4 特征增强/38
第4章 基于模型的迁移学习/40
4.1 引言/40
4.2 基于共享模型成分的迁移学习/42
4.2.1 利用高斯过程的迁移学习/42
4.2.2 利用贝叶斯模型的知识迁移/43
4.2.3 利用深度模型的模型迁移/44
4.2.4 其他方法/45
4.3 基于正则化的迁移/45
4.3.1 基于支持向量机的正则化/46
4.3.2 基于多核学习的迁移学习/47
4.3.3 深度模型中的微调方法/48
第5章 基于关系的迁移学习/52
5.1 引言/52
5.2 马尔可夫逻辑网络/54
5.3 利用马尔可夫网络的基于关系的迁移学习/55
5.3.1 通过一阶逻辑的浅层迁移/55
5.3.2 通过二阶逻辑的深度迁移/57
5.3.3 通过结构类比的迁移学习/59
第6章 异构迁移学习/61
6.1 引言/61
6.2 异构迁移学习问题/63
6.3 方法/63
6.3.1 异构特征空间/64
6.3.2 异构标签空间/78
6.4 应用/79
第7章 对抗式迁移学习/82
7.1 引言/82
7.2 生成对抗网络/83
7.3 采用对抗式模型的迁移学习/86
7.3.1 生成目标域数据/87
7.3.2 通过对抗式学习来学习域不变特征/89
7.4 讨论/91
第8章 强化学习中的迁移学习/92
8.1 引言/92
8.2 背景/93
8.2.1 强化学习/94
8.2.2 强化学习任务中的迁移学习/95
8.2.3 迁移学习在强化学习中的目标/96
8.2.4 迁移强化学习分类/98
8.3 任务间迁移学习/99
8.3.1 基于样本的迁移/99
8.3.2 基于特征的迁移/100
8.3.3 基于模型的迁移/103
8.3.4 解决“迁移时机”问题/105
8.4 域间迁移学习/105
8.4.1 基于样本的迁移/106
8.4.2 基于特征的迁移/107
8.4.3 基于模型的迁移/108
第9章 多任务学习/109
9.1 引言/109
9.2 定义/111
9.3 多任务监督学习/111
9.3.1 基于特征的多任务监督学习/112
9.3.2 基于模型的多任务监督学习/114
9.3.3 基于样本的多任务监督学习/120
9.4 多任务无监督学习/120
9.5 多任务半监督学习/120
9.6 多任务主动学习/121
9.7 多任务强化学习/121
9.8 多任务在线学习/121
9.9 多任务多视图学习/122
9.10 并行与分布式多任务学习/122
第10章 迁移学习理论/123
10.1 引言/123
10.2 多任务学习的泛化界/124
10.3 监督迁移学习的泛化界/127
10.4 无监督迁移学习的泛化界/129
第11章 传导式迁移学习/131
11.1 引言/131
11.2 混合图上的传导式迁移学习/133
11.2.1 问题定义/134
11.2.2 混合迁移算法/135
11.3 基于隐性特征表示的传导式迁移学习/137
11.3.1 问题定义/137
11.3.2 耦合的矩阵三因子分解算法/138
11.4 基于深度神经网络的传导式迁移学习/141
11.4.1 问题定义/141
11.4.2 选择学习算法/142
第12章 自动迁移学习:学习如何自动迁移/146
12.1 引言/146
12.2 L2T框架/147
12.3 参数化“迁移什么”/148
12.3.1 基于公共隐空间的算法/149
12.3.2 基于流形集成的算法/149
12.4 从经验中学习/149
12.4.1 源域和目标域之间的差异/149
12.4.2 目标域判别能力/151
12.4.3 优化问题/151
12.5 推断“迁移什么”/151
12.6 与其他学习范式的联系/152
12.6.1 迁移学习/152
12.6.2 多任务学习/153
12.6.3 终身机器学习/153
12.6.4 自动化机器学习/153
第13章 小样本学习/155
13.1 引言/155
13.2 零样本学习/156
13.2.1 概述/156
13.2.2 零样本学习算法/157
13.3 单样本学习/161
13.3.1 概述/161
13.3.2 单样本学习算法/161
13.4 贝叶斯规划学习/163
13.4.1 概述/163
13.4.2 用于识别字符笔画的贝叶斯规划学习/163
13.5 短缺资源学习/166
13.5.1 概述/166
13.5.2 机器翻译/166
13.6 域泛化/168
13.6.1 概述/168
13.6.2 偏差SVM/169
13.6.3 多任务自动编码器/169
第14
^ 收 起
目 录内容简介
本书是关于迁移学习的基础、方法、技术和应用的一本书。内容分成两个部分:第壹部分介绍了迁移学习的基础。第二部分涵盖了迁移学习的许多应用领域。迁移学习解决的是学习系统如何快速地适应新场景、新任务和新环境。其研究涉及科学和工程的许多领域,包括人工智能、算法理论、概率和统计等。本书是一本供经验丰富的机器学习研究人员和应用程序开发人员使用的参考书。
比价列表
1人想要
公众号、微信群
缺书网
微信公众号
微信公众号
扫码进群
实时获取购书优惠
实时获取购书优惠