机器学习中的概率统计 Python语言描述
作者:张雨萌 著
出版:机械工业出版社 2020.12
丛书:智能系统与技术丛书
页数:276
定价:79.00 元
ISBN-13:9787111669357
ISBN-10:7111669355
去豆瓣看看 第1章 概率思想:构建理论基础 1
1.1 理论基石:条件概率、独立性与贝叶斯 1
1.1.1 从概率到条件概率 1
1.1.2 条件概率的具体描述 2
1.1.3 条件概率的表达式分析 3
1.1.4 两个事件的独立性 4
1.1.5 从条件概率到全概率公式 5
1.1.6 聚焦贝叶斯公式 6
1.1.7 本质内涵:由因到果,由果推因 7
1.2 事件的关系:深入理解独立性 8
1.2.1 重新梳理两个事件的独立性 8
1.2.2 不相容与独立性 8
1.2.3 条件独立 9
1.2.4 独立与条件独立 11
1.2.5 独立重复实验 11
第2章 变量分布:描述随机世界 13
2.1 离散型随机变量:分布与数字特征 13
2.1.1 从事件到随机变量 13
2.1.2 离散型随机变量及其要素 14
2.1.3 离散型随机变量的分布列 15
2.1.4 分布列和概率质量函数 16
2.1.5 二项分布及二项随机变量 17
2.1.6 几何分布及几何随机变量 21
2.1.7 泊松分布及泊松随机变量 24
2.2 连续型随机变量:分布与数字特征 27
2.2.1 概率密度函数 27
2.2.2 连续型随机变量区间概率的计算 29
2.2.3 连续型随机变量的期望与方差 29
2.2.4 正态分布及正态随机变量 30
2.2.5 指数分布及指数随机变量 33
2.2.6 均匀分布及其随机变量 35
2.3 多元随机变量(上):联合、边缘与条件 38
2.3.1 实验中引入多个随机变量 38
2.3.2 联合分布列 38
2.3.3 边缘分布列 39
2.3.4 条件分布列 40
2.3.5 集中梳理核心的概率理论 44
2.4 多元随机变量(下):独立与相关 46
2.4.1 随机变量与事件的独立性 46
2.4.2 随机变量之间的独立性 47
2.4.3 独立性示例 48
2.4.4 条件独立的概念 48
2.4.5 独立随机变量的期望和方差 50
2.4.6 随机变量的相关性分析及量化方法 52
2.4.7 协方差及协方差矩阵 52
2.4.8 相关系数的概念 54
2.5 多元随机变量实践:聚焦多元正态分布 55
2.5.1 再谈相关性:基于二元标准正态分布 55
2.5.2 二元一般正态分布 57
2.5.3 聚焦相关系数 60
2.5.4 独立和相关性的关系 64
2.6 多元高斯分布:参数特征和几何意义 66
2.6.1 从一元分布到多元分布 66
2.6.2 多元高斯分布的参数形式 67
2.6.3 二元高斯分布的具体示例 68
2.6.4 多元高斯分布的几何特征 71
2.6.5 二元高斯分布几何特征实例分析 74
第3章 参数估计:探寻最大可能 77
3.1 极限思维:大数定律与中心极限定理 77
3.1.1 一个背景话题 77
3.1.2 大数定律 78
3.1.3 大数定律的模拟 80
3.1.4 中心极限定理 83
3.1.5 中心极限定理的工程意义 84
3.1.6 中心极限定理的模拟 85
3.1.7 大数定律的应用:蒙特卡罗方法 86
3.2 推断未知:统计推断的基本框架 89
3.3 极大似然估计 100
3.4 含有隐变量的参数估计问题 110
3.5 概率渐增:EM算法的合理性 118
3.6 探索EM公式的底层逻辑与由来 123
3.7 探索高斯混合模型:EM 迭代实践 127
3.8 高斯混合模型的参数求解 132
第4章 随机过程:聚焦动态特征 145
4.1 由静向动:随机过程导引 145
4.2 状态转移:初识马尔可夫链 155
4.3 变与不变:马尔可夫链的极限与稳态 164
4.4 隐马尔可夫模型:明暗两条线 176
4.5 概率估计:隐马尔可夫模型观测序列描述 183
4.6 状态解码:隐马尔可夫模型隐状态揭秘 194
4.7 连续域上的无限维:高斯过程 204
第5章 统计推断:贯穿近似策略 215
5.1 统计推断的基本思想和分类 215
5.2 随机近似方法 219
5.3 采样绝佳途径:借助马尔可夫链的稳态性质 228
5.4 马尔可夫链-蒙特卡罗方法详解 242
5.5 Gibbs采样方法简介 253
张雨萌
资深人工智能技术专家,毕业于清华大学计算机系,长期从事人工智能领域相关研究工作,谙熟机器学习算法应用及其背后的数学基础理论。目前已出版多部机器学习数学基础类畅销书籍,广受读者好评。
本书围绕机器学习算法中涉及的概率统计知识展开介绍,沿着概率思想、变量分布、参数估计、随机过程和统计推断的知识主线进行讲解,结合数学的本质内涵,用浅显易懂的语言讲透深刻的数学思想,帮助读者构建理论体系。同时,作者在讲解的过程中注重应用场景的延伸,并利用Python工具无缝对接工程应用,帮助读者学以致用。
全书共5章。
第1章以条件概率和独立性作为切入点,帮助读者建立认知概率世界的正确视角。
第2章介绍随机变量的基础概念和重要分布类型,并探讨多元随机变量间的重要关系。
第3章介绍极限思维以及蒙特卡罗方法,并重点分析极大似然估计方法以及有偏无偏等重要性质,最后拓展到含有隐变量的参数估计问题,介绍EM算法的原理及其应用。
第4章由静态的随机变量过渡到动态的随机过程,重点介绍马尔可夫过程和隐马尔可夫模型。
第5章聚焦马尔可夫链-蒙特卡罗方法,并列举实例展示Metropolis-Hastings和Gibbs的具体采样过程。